This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

ANALYSIS OF MEDICINAL PLANTS BY HPLC: RECENT APPROACHES

Gabriela Cimpan^a; Simion Gocan^b

^a Consultant, Tunbridge Wells, UK ^b Analytical Chemistry Department, "Babes-Bolyai" University, Cluj-Napoca, Romania

Online publication date: 28 August 2002

To cite this Article Cimpan, Gabriela and Gocan, Simion(2002) 'ANALYSIS OF MEDICINAL PLANTS BY HPLC: RECENT APPROACHES', Journal of Liquid Chromatography & Related Technologies, 25: 13, 2225 — 2292 To link to this Article: DOI: 10.1081/JLC-120014003 URL: http://dx.doi.org/10.1081/JLC-120014003

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES Vol. 25, Nos. 13–15, pp. 2225–2292, 2002

ANALYSIS OF MEDICINAL PLANTS BY HPLC: RECENT APPROACHES

Gabriela Cimpan^{1,*} and Simion Gocan²

 ¹53 Hastings Road, Pembury, Tunbridge Wells, TN2 4JS, UK
 ²"Babes-Bolyai" University, Analytical Chemistry Department, 11 A. Janos str., 3400 Cluj-Napoca, Romania

ABSTRACT

Medicinal plants are widely used, nowadays, for the preparation of various pharmaceutical forms, or as food additives; therefore, the research focuses on validated methods of analysis by single or hyphenated HPLC. This review includes references to recent work for the analysis of flavonoids, terpenes, alkaloids, coumarins, alkamides, polyacetylene and some other compounds of interest which can be found in medicinal plants. Details of experimental conditions (sample preparation, chromatography) are included.

Key Words: Medicinal plants; HPLC; Review; Flavonoids; Phenolic acids; Terpenes; Terpenoids; Carotenoids; Alkaloids; Coumarins; Alkamides; Polyacetylenes

INTRODUCTION

Medicinal plants are widely used, nowadays, for the preparation of different pharmaceutical forms, or as food additives. Their routine analysis was mainly

2225

DOI: 10.1081/JLC-120014003 Copyright © 2002 by Marcel Dekker, Inc. 1082-6076 (Print); 1520-572X (Online) www.dekker.com

^{*}Corresponding author. E-mail: cimpan@xnet.ro

2226

CIMPAN AND GOCAN

based on TLC, but single or hyphenated HPLC methods are being validated.^[1–6] It is well known that the content and composition of active compounds in herbal medicines are strongly influenced by many factors, such as genotype, climate, harvest, and preparation processes. Therefore, the analytical investigation should take into consideration these conditions, and should also be accurate, reproducible, with low detection limits. The main problem in separating complex mixtures, such as plant extracts, by chromatography, is in finding systems which have specific selectivities. Coupling normal phase with reversed phase liquid chromatography can be useful for the separation in oa single run for many compounds, from non-polar to very polar. Often, thin-layer chromatography (TLC) can give important information about a plant extract; it is used for the preliminary screening of the separated compounds prior to HPLC. Complex mobile phase gradients are often used for the separation of compounds with different polarities.

The traditional methods of preparing plant extracts include steam distillation and organic solvent extractions using percolation, maceration, or Soxhlet techniques. These methods are sometimes very complex, including a number of steps, and significant quantities of organic solvents. Care should be taken when selecting the temperature and when solvent removal is important (extract concentration, evaporation to dryness), because these steps can lead to the degradation of the compounds or to loss of material. Supercritical fluid extraction (SFE) shows several advantages in the extraction of different compounds from natural matrices, such as suitability of the extraction controlled by diffusion in plant tissues, and easy modification of solvent strength by changing the temperature or pressure of the experimental conditions. Carbon dioxide is the most commonly used supercritical fluid because of its low toxicity, low cost, low critical temperature, non-flammability, and easy removal from the system.^[7] Microwave assisted extraction of compounds of interest from a medicinal plant have also been used but, in this case, the extraction should be performed in alternative steps, power on-heating, power off-cooling, as the solvent should not boil.

Hyphenated techniques, such as HPLC–NMR or HPLC–MS play an increasing role in the analysis of natural products, since they permit the fast screening of the crude biological extracts or pharmaceutical preparations. The HPLC–NMR technique can give valuable information about the structures of investigated compounds by the observation of exchangeable protons (e.g., N–H, O–H) usually in deuterated aprotic solvents. The investigations can also be performed in protic solvents, such as ¹H₂O, with a solvent suppression scheme, and the results can be compared with the HPLC–MS data obtained by analyzing the exchange of ¹H₂O against ²H₂O. Two-dimensional NMR (2D-NMR) experiments such as TOCSY (total correlation spectroscopy) and NOESY (nuclear Overhausser effect spectroscopy) have been used for the investigation of *Triphyophyllum peltatum* (Dioncophyllaceae).^[8]

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

There are situations where both NMR and MS data are needed for structure determination (e.g., positional isomers of substituents on an aromatic ring). Newer HPLC compatible interfaces allow the application of multiple hyphenation techniques like HPLC–NMR–MS, and more ambitious combinations with UV-diode array spectrophotometry or IR are under investigation. These techniques have an enormous potential for the rapid investigation of plant extracts.^[9]

Ecdysteroids from crude extracts of Silene otites, Silene nutans, and Silene frivaldiskiana were investigated by a combination of spectrometers coupled with HPLC, which enables the on-flow collection of UV, ¹H NMR, IR, and MS spectra. The multiple hyphenation of several spectroscopies in a single system has the potential of better identification of compounds from plant extracts. The dried plant material was extracted with 96% ethanol, the extract evaporated to dryness, and the residue was dissolved in a small volume of deuterated methanol (CD₃OD) before HPLC. The extracts were subjected to a qualitative screening for the identification of ecdysteroids by normal-phase HPLC (on silica gel) with UV detection using a solvent system of dichloromethane-2-propanol-water (125:40:3 or 125:20:1.5, v/v). The pump of the chromatographic system delivered D₂O at 0.8 mL/min to a C8 XTerra column (150×4.6 mm, 5 µm) or to a C₁₈ XTerra column (150 \times 4.6 mm, 5 μ m). Columns were placed in an oven for chromatography at elevated temperatures (160°C). The eluent from the oven was cooled immediately in a water bath kept at $0-4^{\circ}C$ using ice. The D₂O was maintained in a liquid state at temperatures greater than 100°C by the back pressure generated by the PEEK tubing connecting the column to the various detectors. A small part of the effluent was subject to MS, and the rest of the flow (ca. 95%) was directed to an FTIR. The effluent from the FTIR was directed to a UV-diode array detector where the UV spectra were collected over the wavelength range 188–1000 nm. From the UV detector, the effluent was sent to the NMR flow probe. The method enables full spectral characterization of ecdysteroidcontaining plants although, in some cases, lower sensitivities can be obtained.^[10]

The review is focused on some recent development of plant material analysis by HPLC during recent years. However, the published material related to medicinal plants and liquid chromatography is numerous and an extensive approach of the plant analysis by HPLC is beyond the aim of the present paper.

FLAVONOIDS

Flavonoids are benzopyrane derivatives with a phenyl group in the second position; they are natural polyphenols, widely spread among different plant species. Flavonoids can be O-glycosides, usually in the positions three or seven. According to the degree of oxidation, the flavonoids can be classified as: calcones, flavanones, flavonols, catechins, terpenylflavonols, isoflavonols, etc.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2228

CIMPAN AND GOCAN

Many flavonoids show activity related to the sanguine capillary, have an antioxidant activity, and are involved in the oxidation processes which take place in the cell. Their biological activity is very important and many allopathic or homeopathic drugs which are flavonoid-rich are on the market. The consumer demands are for naturally processed, additive-free, safer products. Organic foods are in great demand, and the necessity for new and more reliable analytical methods is of concern. Modern pathological prevention has been linked to a number of natural phenolic biomolecules from fruits and vegetables. From this point of view, the qualitative and quantitative analysis of a plant extract becomes very important.^[11]

Flavonoids can be extracted from plants by various methods, most of them involving an extraction in ethanol, followed by a precipitation, at room temperature, or by the help of lead acetate, and purification. Flavonoids are generally stable compounds and may be extracted from the dried, ground medicinal plant material and pharmaceutical preparation with cold or hot solvents (aqueous mixtures with ethanol, methanol, acetone, and dimethylformamide). Modern separation methods involve chromatography on magnezol, cellulose, or polyamide packings. Other methods involve successive extractions with different solvents and chromatographic separation on a specific fraction. Usually, the aglycons can be extracted in low-polarity solvents, but the extractions are not very selective, so a further step must involve defatting with petroleum ether or hexane. The flavonoid recovery will not be very high because of the large number of steps involved. The use of a large number of methods, individually or hyphenated, has been published (TLC, HPLC, GC, electrophoresis, gravimetry, spectrophotometry, coulometry, IR, NMR, MS) for the quantification of flavonoids from plants. Table 1 includes a selection of the most recent work in this field.

Flavonoids have a diphenylpropane skeleton. The monomeric flavonoids commonly found in food can be divided into five subclasses: anthocyanidins, catechins (flavan-3-ols), flavanones, flavones, and flavonols. Glycosylation is often on C3 and, less often, on C5, C7, and C4'. The most common sugar is glucose, but other sugars are found, including rhamnose, galactose, xylose, rutinose, and neohesperidose.^[39,40]

Thirty two biophenols and polyphenols were analysed in *Olea europaea* L. (olives).^[41] The plant material (fruits), was extracted by following four different procedures, so that different biophenols can be analysed. Procedure A involves the extraction of olives with 6 N HCl, then with ethyl acetate until negative FeCl₃ and H₂SO₄ tests. The organic phase was treated with acetonitrile–hexane 1:1 (v/v), resulting in two immiscible organic phases and an insoluble precipitate. The biophenols were contained in the acetonitrile phase. In procedure B, the isolation of soluble and alkalyhydrolysable phenolic fractions was performed as follows: olives were left at room temperature for 24 h in

and Analyte Sample Preparation Meth <i>ilis</i> L. Apigenin-7-O-glycoside Dried flowers were extracted Column: C ₈ Aq <i>ilis</i> L. Apigenin-7-O-glycoside Dried flowers were extracted Column: C ₈ Aq Apiegin-7-O-glycoside Dried flowers were extracted Column: C ₈ Aq Apiegin-7-O-glycoside Dried flowers were extracted 300 (250 × 4) Luteolin-7-O-glucoside 15 min at 60°C; extract isocratic elution; Luteolin-7-O-glucoside 15 min at 60°C; extract 300 (250 × 4) <i>at increscens</i> , and percolated through a 230 - 430 mn. <i>gaca</i> , Enantiomeric Dried sample was extracted Column packed <i>at increscens</i> , flavanones: Dried sample was extracted Column packed <i>at increscens</i> , flavanones: Dried sample was extracted or diol (125 × 4) <i>at increscens</i> , flavanones: vacuum at 40°C. diol (125 × 4) <i>at increscens</i> , flavanones: exception of T. <i>vulgaris</i> supported or <i>ulgaris</i> homoeriodicyol vacuum at 40°C. (jol (125 × 4) <i>ulgaris</i> f-butylmethylether. Gradient 1: A = <i>Rutinosum</i> , tesclutes were discloved (jol (125 × 4) <i>ulgaris</i> tesclute by VC. <td< th=""><th></th><th></th></td<>		
I.Apigenin-7-O-glycosideDried flowers were extractedColumn: C_8 AqApiegin-7-O-glycosideNith 60% methanol for300 (250 × 4)Luteolin-7-O-glucoside15 min at 60°C; extractsocratic elution/waLuteolin-7-O-glucoside15 min at 60°C; extractpropanol/waunder vacuum; residueF = 2 mL/min;dissolved in methanolDetection: UV iand percolated through a230-430 nm.Sep-Pak Clscartridge.ea,EnantionericDried sample was extractedncrescens,flavanones:glutinosum,eriodictyol,with methanol with thecellulose triaand naringenin.Column packedand naringenin.cellulose triaglutinosum,eriodictyoland naringenin.Column packedfradient 1: A =Extracts were dried infradient 1: Aaud naringenin.Extracts were dried inColumn packedfor out at 40°C.Putylmethylether.fradient 1: A =Extracts were dried infradient 1: A =extract was reacted infradient 1: A =fradient 1: A =for out at 40°C.Readient 1: A =for out and pacted by SPE onfradient 1: A =for out at elevated temperaturesand 20% B in 20for out at elevated temperaturesfradient 2: A =at elevated temperaturesin aqueous alcoholicfor out a lobolicfradient 2: bis for for 10 in 1 in	Method	Ref.
ea, Enantiomeric Dried sample was extracted Column packed <i>ncrescens,</i> flavanones: with methanol with the cellulose tria <i>glutinosum,</i> eriodictyol, exception of <i>T. vulgaris</i> supported or <i>gutinosum,</i> eriodictyol, which was extracted in diol (125 × 4) <i>and</i> naringenin. <i>r</i> -butylmethylether. Gradient 1: A = Extracts were dried in 2-propanol (vacuum at 40° C. <i>n</i> methanol and in methanol and and 20% B; percolated by SPE on [10:ar gradie C18 cartridge. The C18 cartridge. The Gradient 2: A = at elevated temperatures methanol/ac in aqueous alcoholic (90:10:1) <i>z</i>	ted Column: C ₈ Aquapore RP or $300 (250 \times 4 \text{ mm}, 7 \mu\text{m})$. t Isocratic elution with 2- propanol/water (15:85) F = 2 mL/min; Detection: UV spectra h a $230-430 \text{ nm}$.	12
solution. $B = methanc$	ed Column packed with e cellulose triacetate supported on silica gel diol (125 × 4.6 mm). Gradient 1: A = <i>n</i> -hexane/ 2-propanol (9 : 1); B = methanol/2-propanol ed (2 : 1) Starting: 80% A and 20% B; after 1 min linear gradient 20% B to 60% B in 20 min. d Gradient 2: A = water/ methanol/acetic acid (90 : 10 : 1) and B = methanol. Initial	13
solution.		cted Column: C ₈ Aquapore RP or 300 (250×4 mm, 7 µm). ict Isocratic elution with 2- propanol/water (15:85) ie F=2 mL/min; Detection: UV spectra gh a 230–430 nm. e. 230–430 nm. in 230–430 nm. cellulose triacetate <i>ris</i> supported on silica gel in diol (125 × 4.6 mm). Gradient 1: A = <i>n</i> -hexane/ 1 2-propanol (9:1); B = methanol/2-propanol ved (2:1) Starting: 80% A and 20% B; after 1 min linear gradient 20% B to 60% B in 20 min. ed Gradient 2: A = water/ methanol/acetic acid (90:10:1) and B = methanol.

Downloaded At: 20:48 23 January 2011

29

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

22	30	CIN	MPAN AND GOCAN
	Ref.	4	15
	Method	5 min. Then 10% B to 80% B in 30 min F = 1 mL/min. Detection: UV 295 mm Column: Symetry C ₁₈ (150 × 2.1 mm, 5 µm); guard column: Symetry C ₁₈ , (20 × 3.9 mm, 5 µm); temp. = 45° C Linear gradient: A = water containing 0.25% acetic acid; B = acetonitrile containing 0.25% acetic acid; B = acetonitrile containing 0.25% acetic acid: 18–42% B in 40 min. Detection: UV-Vis spectra 200–500 nm; LC-electro- spray interface (ESI)-MS in positive ion mode	Column: Lichrosorb RP-18 precolumn and a Hibar Lichrospher RP-18 column $(250 \times 4.6 \text{ mm}, 5 \mu \text{m})$ Mobile phase: (A) 2 mM H ₃ PO ₄ and (B) MeOH, the elution programe at
1. Continued	Sample Preparation	The sample of ground dried roots was extracted with ethanol/water (9:1) at room temperature using sonication for 60 min. After filtration the sample is ready for analysis.	Ground coffee extracted 4 times with aqueous ethanol 80%. Alcohol fractions were combined and concentrated under reduced pressure. Followed extractions with petroleum ether,
Table	Analyte	Eighth flavonoids were identified. This is the first report of flavonoid glycoside malonates in the two species, and malonate calycosin-7-O- β -D- glucoside-6"-O-malonate is a new compound, completely identified structurally.	7 chlorogenic acids (5-CQA, 5-FQA, 3,4- diCQA, 3,5 = diCQA, 4,5-diCQA, 3,4-CFQA, 4,4-CFQA, where CQA = caffeoylquinic acid, FQA = feruloylquinic acid).
	Medicinal Plant	Astragalus mongolicus Bge. and A. membranaceus Bge. Var Mongolicus	Coffea arahica, Coffea canephora

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL	PLANTS	2231
	16	(pena)
room temperature (25°C) was: 0–10 min 60% B (isocratic); 10–25 min 100% B (linear gradient) F = 1 mL/min Detection: HPLC–DAD (diode array detection) UV spectra 220–340 nm HPLC–MS and comparison with the reference spectra.	Column: LiChrosorb RP-18 (250×4 mm, 5 µm) and a guard column (10×4 mm) of the same material; temp. 24° C. Gradient elution: A = methanol; B = 0.5% o-phosphoric acid in water; ($18\% A - 82\%$ B to ($24\% A - 76\%$ B) in ($24\% A - 76\%$ B) to ($40\% A - 60\%$ B) in 25 min, then 100% A from $45 - 50$ min.	(acc)
anhydrysation and extraction with chloro- form; another extraction was made with ethyl acetate to extract the chlorogenic acids. The extraction of total chlor- orgenic acid was also performed.	Powder of dried leaves was macerated with aqueous acetone 70% for 15 min. The suspension was trans- ferred to a column and percolated. The extract solution was evaporated under vacuum at 30° C, then diluted with metha- nol to produce a 50% aqueous solution and fil- tered. The methanolic solution was evaporated under vacuum, immedi- ately frozen and lyophi- lized. Final purification by SPE on Sep-Pak C ₁₈	cartridges.
	Catechins ((–)-epicatechin Procyani dimmers: (–)-epicatechin- ($4\beta \rightarrow 8$)- (–)- epicatechin; (–)- epicatechin; (–)- epicatechin; (–)- (–)-epicatechin, and trimer (–)-epicatechin- ($4\beta \rightarrow 8$)- (–)-epicatechin- ($4\beta \rightarrow 8$)- (–)-epicatechin- ($4\beta \rightarrow 8$)-	
	Crataegus	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2232			CIMPAN AND GOCAN
	Ref.	17	
	Method	F = 1.0 mL/min Detection at 280 and 220 nm. Recorded spectra in the range 190–600 nm. Column: Hypersil ODS (100 × 4 mm, 5 µm); temp. = 25° C. For vitexin: Mobile phase: A = THF/ 2-propanol/acetonitrile (18: 8: 3) and B = 0.5% o-phosphoric acid. Isocratic elution (0–13 min 12% A in B); E = 1 m1 /min	UV detection at 336 and 260 nm. For quercetin: Gradient elution $0-15$ min 30% A = methanol in B = 0.5% o-phosphoric acid to 55% A in B UV detection at 370 and 260 nm.
e 1. Continued	Sample Preparation	Dried leaves, flowers and fruits were refluxed with 80% methanol 60 min, evapored under vacuum. Then SPE on Bond Elut C ₁₈ . Hydrolysation with 25% HCl refluxed for 90 min.	
Tabl	Analyte	Vitexin after hydrolysis Quercetin after hydrolysis	
	Medicinal Plant	Crataegus monogya Jacq	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Downloaded At: 20:48 23 January 2011

2002 Marcel Dek	ker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission	n of Marcel Dek
	ANALYSIS OF MEDICINAL PLANTS	2233
	<u>8</u>	inued)
	 HPLC-UV-TSP-MS-MS Column: Nova-Pak RP-18 (300 × 3.9 mm, 4 μm) and Nova-Pak guard precolumn. Isocratic elution: acetonitrile/water (14 : 86) and trifluoracetic acid (0.05%) to reduce tailing. F = 0.9 mL/min Spectral window 200-400 nm. HPLC-UV. TSP-MS System A: Nucleosil RP-18 (250 × 4 mm; 5 μm); Gradient elution: acetonitrile/water 15: 85 to 25: 75 in 25 min and trifluoracetic acid (0.05%); F = 1 mL/min. Spectral window UV 200-400 nm and MS 120-800 amu. System B: Nova-Pak RP-18 4 µm (300 × 3.9 mm) and Nova-Dak contart 	cont
	The whole plant was air-dried and grounded, then successively extracted at room temp. with dichlormethane, then with methanol. Methanolic extracts were dissolved in methanol/ water (50:50). A small quantity of the plant material was extracted with ethanol/water (50:50) at room temp. for 24 h. This extract was dissolved in methanol/ water (50:50). "Sirop de Dissotis" was extracted for 24 h with 2-butanol. The solvent was evaporated and the resi- due dissolved in metha- nol/water (50:50).	
	Four C-glycosilflavone: isoorientin, vitexin and isovitexin.	
	Dissotis rotundifolia T.	

223	4		CIMPAN A	AND GOCAN
	Ref.		12	19
	Method	precolumn. Isocratic elution: acetonitrile/water (14:86) triffuoracetic acid (0.05%); F = 0.8 mL/min. Spectral window UV: 200-400 nm The MS system consisted of a triple stage, quadrupole MS equipped with a TSP-2 interface; spectral window 100-600 amu.	Column: C ₈ Aquapore RP 300 (250 × 4 mm, 7 μm). Isocratic elution with 2-pro- panol/water (15:85); F = 2 mL/min; Detection UV spectra 230–430 nm.	Column: Hypersil ODS (200 × 4 mm); temp. 30°C Gradient elution: A = methanol/o-phosphoric acid (999:1); B = water/
1. Continued	Sample Preparation		Dried leaves were extracted with 60% methanol for 15 min at 60°C; the extract dried under vacuum, and the residue dissolved in methanol and percolated through a Sep-Pak C ₁₈ .	Wood, bark and leaves samples were grounded and extracted with methanol/water (80:20) at room temp. for 24 h.
Table .	Analyte		Isoquercitrin Quercetin-3-O- soforoside Astragalin	Flavonoids Flavone: luteolin, apigenin, chrysin, flavone Flavanones: eriodictyol, naringenin, hesperetin, sakuranetin, pinocem-
	Medicinal Plant		Equisetum arvense L.	Eucalyptus camaldulensis

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Downloaded At: 20:48 23 January 2011

ANALYSIS OF MEDICINAL PLANTS		2235
	20	tinued)
<i>o</i> -phosphoric acid (999:1) Starting: 80% B+20% A; in 0-40 min to 100% A and kept at 100% a from 40-45 min. F = 1 mL/min Detection at 325 nm.	Column: Nova Pak C_{18} (150 × 3.9 mm), and Nova Pak C_{18} precolumn. Gradient elution: acetonitrile/water 5:95% to 65:35% in 50 min. Detection at 254 nm. LC-UV spectrum of swertisin LC/TSP-MS spectrum of swertisin LC/TSP-MS/ MS of [M-120] ⁺ spectrum LC/ ¹ NMR with the stop-flow;	spectrum of swertisin. (cont
The extract was filtered, and methanol removed under vacuum distilla- tion. The aqueous solu- tion was extracted with diethyl ether, the etheric extract was dried and the residue redisolved in methanol.	The whole plant was extracted with methanol.	
brin, isosakuranetin, flavone Dihydroflavono- lols and flavonols: taxifolin, myricetin, fisetin, quercetin, kaempferol Isoflavones: prunetin tectochrysin Flavone Glycosides: vitexin, luteolin-7-gluco- side Flavanone Glyco- sides: hesperidin, naringin Flavonol Glycosides: hyperoside, rutin, isoquer- citrin, kaempferol-7-neo- hesperidoside, quercitrin.	Flavone C-glycoside; swertisin	
	Gentiana ottonis	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

22	36			CIMPAN AND GOCAN
	Ref.	12	21	22
	Method	Column: C ₈ Aquapore RP 300 (250 × 4 mm, 7 μm) Linear gradient: (A) water/2-propanol (95 : 5); (B) 2-propanol/ THF/water (40 : 10 : 50) from 20 to 60% B in 40 min F = 2 mL/min UV spectra 230–430 nm.	HPLC: column, Novapak C ₁₈ ; Mobile phase: THF/propanol/water (21:10:69); F = 1 mL/min Detection UV at 270 nm.	CC: Sephadex LH-20 (800 × 49 mm) and Separalyte RP-18, 40 µm (713 × 18.5 mm); Mobile phase: methanol/ water gradient. HPLC: Hypersil ODS (100 × 4 mm, 3 µm); Linear gradient: A = methanol and
1. Continued	Sample Preparation	Dried leaves were extracted 15 min under reflux with 60% aqueous acetone.	<i>G. biloba</i> L. extract was dissolved in ethanol, centrifugated at 5,000 g for 3 min and supernatant was filtered through a 0.45 µm membrane.	Powder of dried leaves was extracted with petrol followed by acetone and finally methanol. Each extract was concentrated by rotary evaporation at 30°C. Methanolic extract was partitioned between water/ <i>n</i> -butanol. <i>n</i> -Butanol extract was
Table	Analyte	Quercetin-3-O-glicoside 5 compounds Kaempferol- 3-O-glicoside 5 com- pounds Isorhamnetin-3- O-glycoside	Biflavones: bilobetin, gink- getin, isoginkgetin and sciadopitysin	Five new flavonol glyco- sides: K $3-[2''-glu]rha; K$ $3-[2''-6'''-\{p-(7'''-glu)$ coumaroy]}-glu]rha; Q $3-[2''-6''-$ $\{p-(7'''-glu)$ coumaroy]}- glu]rha; Q $3-[2''-6''-p-$ glu]rha; Q $3-[2''-6''-p-$ coumaroy]-glu]rha-7-glu. K = kaempferol Q = quercetin
	Medicinal Plant	Ginkgo biloba L.	G. biloba L.	G. biloba L.

Downloaded At: 20:48 23 January 2011

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDIC	ANALYSIS OF MEDICINAL PLANTS		
	23	24	
 B = 0.5% o-phosphoric acid in water. Gradient from 38 to 48.2% A in 12 min. Structural characterization by: ¹H and ¹³C NMR, UV and FAB-MS spectra FAB = Fast Atom Bombardment. 	Column: Aquapore RP-300 (220 × 4.6 mm) Eluents: 2-propanol/THF/ water (10:5:85), and 2-propanol/THF/ ammo- nium acetate pH 4.5 (10:5:85). F = 1.8 and 1.2 mL/min, respectively. LC-TSP-MS, full-scan spectra <i>m/z</i> 260–800	Column: Nucleosil 100-C ₁₈ , 3 µm; temp. 30°C Ternary gradient: (a) A = methanol, B = THF, C = 0.5% o-phosphoric acid; F = 1 mL/min Detection at 360 nm	
fractionated by Craig distribution. The purification by CC (col- umn chromatography) lead to five pure flavonol glycosides.	Compounds (I) and (II) were isolated from a purified extract of <i>G. biloba</i> and <i>C. officinalis</i> The metha- nolic solutions of com- pounds (I) and (II) were used for chromatography	Method A: refluxed with methanol/25% HCl (70:10) for 60 min; the extract was dried under vacuum; further purifica- tion on Bond Elut C ₁₈ Method B: extraction by a high-speed mixer	
	Kampferol-3-O-[$6'''$ -O-(p - coumaroy])- α -D-gluco- pyranosyl-($1 \rightarrow 4$)- α -L- rhamnoside] (I) and Iso- rhamnetin-3-O- 2^G -rham- nosyl-rutinoside (II)	33 flavonoids	
	G. biloba L. Calendula officinalis	G. <i>biloba</i> L. and Terapeutical extract	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

_

2238	8		CIMPAN A	AND GOCAN
	Ref.		25	26
	Method	 (b) A = 2-propanol/THF (25:65), B = acetonitril, C = 0.5% o-phosphoric acid F = 1 mL/min Detection at 360 nm. 	HPLC-MS-MS Column: reversed-phase C18 (250 \times 4 mm, 5 μ m) Linear solvent gradient from 40 to 100% B (MeCN) in A (1% aq. HCOOH) over 15 min, followed by 100% B for 7 min. F = 0.8 mL/min MS with atmospheric pres- sure chemical ionization source operated in posig- tive ion mode. Argon– nitrogen (9 : 1) was used as target gas in the colli-	sion cell. Column: SGX C ₁₈ , 7 μ m (150 × 3 mm) Gradient elution: A = acetonitrile/water/
<i>I.</i> Continued	Sample Preparation	(20,000 rpm) with 80% ethanol 2 min; evaporated under vacuum; Solid phase extraction (SPE) Bond Elut C ₁₈	The plant material was extracted with MeOH– HCOOH (99:1) for 2 h. A portion of clear extract was directly analysed by HPLC–MS.	Dried flower were extracted in methanol, filtered and immediately injected in the sample injector.
Table	Analyte		22 flavonoids (chalcones, flavanones), xanthohumol	Flavonoids: quercetin quer- citrin, hyperoside, iso- quercitrin and biapigenin
	Medicinal Plant		Humulus lupulus, H. japonicus, (Cannabinaceae)	Hypericum perforatum L. Var. angustifolium DC

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICIN	AL PLANTS	2	2239
	27	28	tinued)
<i>o</i> -phosphoric acid (19:80:1) B = acetonitril/ methanol/ <i>o</i> -phosphoric acid (59:40:1) 0 min 25% B, 5 min 30% B, 10 min 55% B, 15 min 100% B, 25 min 100%, 30 min 25% B.	Column: Protein C4 ($250 \times 0.5 \text{ mm}, 5 \mu \text{m}$) UV monitorization at 230, 254, 270, 350, 590 mm and detection at 270 nm. Parallel NMR experi- ments as an alternative for the routine HPLC analysis, with very good identification results.	Column: Knauer packed with Apex-1 ODS (120 × 4 mm, 5 µm) Mobile phase: (A) acetoni- trile-0.1% acetic acid (5:95); (B) acetonitrile-	(con
	A commercial sample of the extract of <i>H. perforatum</i> , lyophilized extract. The dried extract 2.5 mg/mL was dissolved in a mix- ture of HPLC grade sol- vents (methanol/ acetonitrile/water, actidified to pH 2 with formic acid, 3:1:1), sonicated and before HPLC.	100 mg crude plant extract was solved in 1 mL of a mixture of 80% of d-methanol (CD ₃ OD) in D ₂ O, and was used for analysis. For flavonoid	
	Chlorogenic acid, hyperforins, hypericins, lipids, quercetin derivatives, shikimic acid, sucrose.	Flavonoids, naphthodianthrones, and other constituents.	
	<i>Hypericum</i> <i>perforatum</i> L (St. John's wort)	Hypericum perforatum L.	

Downloaded At: 20:48 23 January 2011

224()		CIMPAN AND GOCAN
	Ref.		29
	Method	20 mM ammonium acet- ate (95 : 5); all buffers were solutions in D ₂ O. Linear gradient: time 0, 10% B; at time 10 min, 20% B; at 20 min, 100% B; at 30 min, 100% B; at 32 min, 10% B (run time 40 min). F = 1 mL/min Coupling with NMR, and MS/MS (neg. electro- spray ionization).	Column: Inertsil ODS-3 ($3.0 \times 150 \text{ mm}$, $3 \mu \text{m}$) with a precolumn ($2.0 \times 10 \text{ mm}$, $5 \mu \text{m}$) packed with the same material; temp. $= 30^{\circ}\text{C}$. Mobile phase: (A) water adjusted to pH 2.5 by CF ₃ COOH, (B) acetoni- trile; a concave solvent gradient from 92% A in B to 30% A in B within 50 min.
able 1. Continued	Sample Preparation	concentration, 50 mg of crude extract was extracted with 75% methanol and retained on a SPE cartrige, and eluted with methanol. The methanolic fraction con- taining flavonoids was prepared as above for LC-NMR-MS analysis.	100 mg dried head flowes were extracted with 80 mL methanol for 1 h and filtered.
П	Analyte		24 flavonoids, polyphenolic compounds.
	Medicinal Plant		Matricaria recutita L. (or Chamomilla recutita L.)

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANA	LYSIS OF MEDICINAL PLANTS	2:	241
	30	31	tinued)
F = 0.4 mL/min Detection: 335 nm, UV-Vis spectra 200–450 nm.	Column: RP-C18 (250 \times 4.6 mm, 5 μ m), temp 30°C Mobile phase: (A) 5% CH ₃ OCH and (B) CH ₃ OH, and the elution programe for screening the extracts was: 0–5 min 70% A; 10–15 min 60% A; 20–25 min 50% A; 30–35 min, 40% A; 40–45 min 20% A. F = 1.3 mL/min Diode array detection, UV 254, 348 nm.	Column: LiChroCart RP-8 supersphere (250 × 4 mm, 10 μm) Mobile phase: Solvent A: H ₂ O-H ₃ PO ₄ (99:1),	(con
	The aerial parts were air dried, and kept in a dark, cool place until the ana- lysis. The sample was extracted with actone containing 5% of 25% HCI. The extract was extracted again with ethyl acetate. The ethyl acetate fractions were collected, dried with anhydrous sodium sulphate, filtered and evaporated to dry- ness under low pressure. The residue was dis- solved in 2 mL of mix- ture of methanol and chloroform (1 : 1), and this solution was used for analysis of flavone aglycons.	Powdered plant material was extracted with methanol under reflux for 15 min then filtered, solvent eva- porated and the residue	
	Flavones (5,7,3,4- tetra-OH-flavones, 5,7,4'-tri-OH- flavones, 5,7,3' -tri-OH-4'Ome- Flavone)	Flavonoids	
	Origanum vulgare	Paliurus spina- christi Mill. (Rhamnaceae) extracts	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

		Table 1. Continued		
Medicinal Plant	Analyte	Sample Preparation	Method	Ref.
		dissolved in a small amount of methanol.	solvent B: acetonitrile; gradient 0-30 min 86–83% A, 14–17% B. F = 1 mL/min Detection: UV 254 nm.	
Phaseolus vulgaris v. vulgaris	Polyphenolic compounds, flavonols. flavonols.	Fresh samples (pod and seeds) and commercial canned beans were extracted at room tem- perature, in the absence of light, with aqueous methanol ($20\% \text{ v/v}$) containing $1\% 2,6$ -di- <i>tert</i> -butyl-4- <i>p</i> -cresol using an ultrasonic bath. The extracts were stored at -20° C prior to HPLC.	 Column: Nucleosil 120 C18 (25 × 0.46 cm i.d., 5 μm) Mobile phase: A: aqueous 0.01 M phosphoric acid, and B: 100% methanol. Gradient: 5% B as initial conditions; 50% for 10 min; 70% B for 5 min; 80% b for 5 min; and finally 100% B for 5 min. F = 1 mL/min. Detection: 280 nm. Absorption spectra recorded in the range 210–350 nm. 	32
Pisum sativum and Vigna radiata	Isoflavonoids	Seeds were desintegrated in a mixer and extracted with 80% ethanol for 72 h at 4°C. The extract was analysed directly by	Column: Nucleosil 100–5 C18 (250 × 4 mm, 5 µm); temp. 40°C Mobile phase: (A) 40% methanol in water; (B)	33

2242

Downloaded At: 20:48 23 January 2011

CIMPAN AND GOCAN

2 ©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be	e used or reproduced in any form without the express written permiss	ion of Marcel Dekker, Inc.
ANALYSIS OF MEDICINAL P	PLANTS	2243
100% methanol. Gradient (all steps linearly): 0 min, $A = 100\%$, B = 0%; 10 min, B = 20%; 25 min, B = 20%; 30 min, B = 100%, then step to A = 100%, then step to A = 100% for 10 min. F = 1 mL/min Detection: UV 254 mm.	HPLC-DAD 34 Column: Zorbax Eclipse XDB-C18 (25034.6 mm, $5 \mu m$) with guard column (12.5 × 4.6 mm) of the same stationary phase; temp. 30°C. Different gradient mixtures of water, methanol, and acetonitrile, each con- taining 0.05% (w/w) tri- fluoroacetic acid (TFA). F = 1.0 mL/min. Detection: 210, 260, 278, 370, 520 nm.	(continued)
radioimmunoassays or firactionated by chroma- tography. Before chro- matography, the extract was evaporated to dry- ness and redissolved in water.	Standard solutions and extracts of flavonoids from the plants.	
	17 monomeric flavonoid aglycones representative for all five common subclasses.	
	Plants available as food in supermarkets	

2244	4			CIMPAN AND GOCAN
	Ref.	35	23	36
	Method	Column: HP ECLIPSE- XDB-C18 Column (150 mm × 4.6 mm); temp. 40° C Mobile phase: methanol/ water (22 : 78) F = 0.4 mL/ min Detection: UV 250 nm.	Column: Aquapore RP-300 (220 × 4.6 mm) Eluents: 2-propanol/THF/ water (10 : 5 : 85), and 2-propanol/THF/ ammo- nium acetate pH 4.5 (10 : 5 : 85). F = 1.8 and 1.2 mL/min, respectively.	Detection: UV 360 nm LC- TSP-MS, full-scan spec- tra m/z 260–800 in PI, except for (II) in NI. HPLC-MS I. Column: Zorbax Exlipse XDB C8 (150 × 4.6 mm, 5 µm); temp. 40°C Mobile
tble 1. Continued	Sample Preparation	Powdered plant material is covered with 30–70% ethanol or water and a microwave-assisted extraction was performed for 30 min. The extract was filtered and analysed by HPLC.	Powdered leaves were sus- pended in 50% methanol and left overnight at room temperature. The solution was evapored to dryness in vacuum and dissolved in methanol.	Dried powdered plant mate- rial was extracted by sonication with methanol/ water (7:3), diluted with water and loaded to
Ta	Analyte	Isoflavone (puerarin)	Q-3-glu-7-rha K-3-glu-7-rha Q-3,7-di-rha K-3,7-di-rha	14 isoffavoneglycosidemalonates and6 acetylglycosides.
	Medicinal Plant	Radix puerariae	Tilia cordata	Trifolium pratense L. (leguminosae)

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Downloaded At: 20:48 23 January 2011

ANALYSIS OF MEDICINAL PLANTS	224	15
	37	tinued)
phase: (A) 0.2% acetic acid, (B) acetonitrile; a linear gr- adient from 15-50% B in 20 min, up to 55% B in the next 25 min and followed by a negative gradient up to 15% B in 30 min. F = 0.8 mL/min II. Column: MetaChem Polaris C18A (150 × 2.0 mm; 3 µm); temp. 40°C Mobile phase: a linear gradient from 15 up to 25% B in 36 min, up to 55% B in 36 min, up to 55% B in 90 min and followed by a negative gradient up to 15% B in 100 min. F = 0.3 mL/min Detection: 280 nm; DAD 190-400 nm for spectra recording MS- positive mode; gas temp. 300°C, scan 100-800 m/z .	Column: LiChroCART (125 × 3 mm, Purospher RP-18e, 5 μm), guard column (4 × 4 mm, 5 μm) Gradient elution using 1% formic acid (A) and	(con
a SPE (reversed phase) cartridge. Isoflavones were eluted with 1 mL of 60 and 80% methanol containing 2% ammonium hydroxyde. The samples were evapora- ted to dryness and dissolved in 0.5 mL of mobile phase, then analysed by HPLC.	Berries frozen in liquid nitrogen and kept in dry ice until stored at -80° C prior to analysis (2–3 weeks). The frozen ber- ries were extracted with	
	Flavonols (myricetin, quercetin, kaempferol) in blueberries.	
	Vaccinium species	

Downloaded At: 20:48 23 January 2011

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

22	46		CIMPAN AND GOCAN
	Ref.		38
	Method	acetonitrile (B): $0-10$ min, 5-40% of B in A, 10^{-} 20 min, 40-70% of B in A, 20-22 min, 70-90% of B in A A (F = 0.5 mL/min); 22- 25 min, 90-5% of B in A F = 0.4 mL/min with the exception above Detection: 360 nm UV.	Column: Lichrosorb RP C-18 (250×4 mm, 10 µm) Gradient elution: acetic acid (0% 10 min; 0–5% in 10–60 min) with continuous in flow of methanol (10%). The flow rate was 1.2–2.0 mL in 60 min. Detection at 280 mm.
le 1. Continued	Sample Preparation	50% aqueous methanol, containing 0.3 mg of morin as an internal standard and 20 mg of tert-butylhydroqui- none as antioxidant at 35°C in a water bath for 2 h. The acid hydrolysis of the flavo- noid glycosides with 6 M HCl, and the flavonol agly- cons were extracted in ethyl acctate. Ethyl acctate was evaporated to dryness under vacuum, the residue dissolved in 0.5 mL methanol and filtered prior to HPLC analysis.	Total extract was concen- trated under vacuum on a rotary evaporator at 30°C. pH was corrected to 7.0. The neutral and acidic phenolic constitu- ents were separated using SPE on C ₁₈ Sep Pak cartridges.
Tab	Analyte		Flavan fingerprints were determined for different plant extract.
	Medicinal Plant		Vitis vinifera L.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Downloaded At: 20:48 23 January 2011

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

2247

argon saturated 2 N NaOH, under argon. The aqueous phases were acidified at pH 2.0 with conc. HCl at a temp below 4°C, treated with anhydrous sodium sulphate, and evaporated to dryness under vacuum at room temp. The residue was treated as described in procedure A and the acetonitrile fraction was subjected to HPLC. Procedure C (isolation of cytoplasmatic biophenols): the olives were left at room temp. for 24 h in CH₂Cl₂. Aqueous and organic phase were separated. The aqueous phase contained water-soluble components. Charcoal was added to the CH₂Cl₂ water-free solution. The resulting suspension, stratified on a Gooch funnel, was salt and simple sugar removed by 5% water and 10% EtOH elution, whereas discontinuous gradient elution, with EtOH from 20 to 90% (300 mL fractions each, were increased each time 10% EtOH content), separated glucosidic biophenols. Collected ethanolic fractions and volatile material evaporation resulted in crude biophenols, which were chromatographed on Si gel in n-BuOH saturated with H₂O, performing the separation according to polarity. Successive separations were obtained on Si gel with CHCl₃-MeOH in a 9:1-7:3 (v/v) ratio, depending on component polarity. Isolated glucosidic biophenols were obtained by medium pressure chromatography columns with a discontinuous gradient of H2O-MeOH as eluent (25 mL fractions, increasing 5% MeOH content). Cytoplasmatic biophenols were identified by comparison with authentic samples, according to their HPLC, ¹H NMR, and ¹³C-NMR spectra. Olives were frozen under liquid nitrogen and freeze dried (procedure D), then extracted with methanolacetone (1:1) and centrifuged under 4°C. The supernatant containing solubleesterified biophenols was extracted with hexane for defatting, then with ether/ ethyl acetate. The acetate extract was evaporated to dryness, redissolved in a small quantity of methanol, and analysed by HPLC. The residue was analysed for insoluble-bond biophenols, by direct hydrolysis with 1 N NaOH under similar conditions as for the soluble esters, then analysed by HPLC. Chromatography was performed on a Bakerbond reversed phase C18 column $(250 \times 4.6 \text{ mm}, 5 \mu \text{m})$, with a precolumn $(50 \times 4 \text{ mm})$ containing the same stationary phase at 25°C. Mobile phase was water/acetic acid, pH 3.1 (98:2) (solvent A), and methanol (solvent B). The gradient started with 95% A-5% B for 3 min, 80% A-20% B in 15 min, 80% A-20% B for 2 min, 60% A-40% B in 10 min, 50% A-50% B in 10 min, 100% B in 10 min, then kept constant for 10 min. The flow rate was 1 mL/min, with diode-array detection (DAD) at 230, 278 nm. For NMR, the solvents were: D₂O, internal standard HDO at 4.70 ppm from TMS; CD₃OD, internal standard TMS; CDCl₃, internal standard TMS.^[41]

Isoflavonoids are typically stored as 7-O glycosides, whilst secretion of aglycones is elicited by different physiologic or pathologic situations.^[42] Isoflavonoids can be found in legumes and other plant species such as *Iridaceae*, *Rosaceae*, *Podocarpaceae*, *Moraceae*, *Armanthaceae*^[43,44] and influence the endocrine system in animals.^[45] More than 3000 flavones and more than 700

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

CIMPAN AND GOCAN

known isoflavones exist in plants. Their structures are based on a 3-phenylbenzpyrone (3-phenylchromone) group. The structure differs in the degree of methylation, hydroxylation, and glycosylation.^[46]

Antioxidants (flavonoids) from Thymus vulgaris L. were analysed by HPLC–CL (chemiluminescence) on an Alltima C_{18} analytical column (250 × 4.6 mm, 5 µm), with photodiode array detector in the range 210-450 nm. The mobile phase was (A) water-acetonitrile (3:1) acidified with 0.25% glacial acetic acid; (B) acetonitrile acidified with 0.25% glacial acetic acid; linear gradient: A decreased over 40 min from 95 to 10%, was held for the following 15 min, and then returned from 10 to 95% in 5 min. The flow rate was 0.85 mL/min with fluorescence quenching detection obtained by on-line post-column addition of CL reagents. Several chemiluminescence reagents were investigated: hydrogen peroxide-1 M NaOH mixture; horseradish microperoxidase sodium salt MP-11 in disodium tetraborate buffer, and brought to pH 10 by addition of 0.1 M of NaOH; and Luminol 1.6 mM in methanol. The plant material was dried under forced ventilation at room temperature for two days, then ground and extracted with methanol for 72 h. The extract was filtrated and vacuum dried at 45°C, and the obtained extract was dissolved in MeOH-H₂O (1:1) for the HPLC-DPPH (2,2'-diphenyl-1-picrylhydrazyl) analysis and in acetonitrile-H₂O (1:1) for the HPLC-CL (chemiluminescence) analysis. The mobile phases for the HPLC-DPPH analysis were mixtures methanol-water or acetonitrile-water acidified with acetic acid. The reagent was added to the organic solvent and the detection wavelength was 517 nm.^[47]

The flavonoids' UV-Vis spectra show strong absorption at the following wavelengths: flavones, biflavones (310-350 nm) and (250-280 nm); isoflavones (310-330 nm) and (245-275); flavonols (350-385 nm) and (250-280 nm); flavanones (310-330 nm) and (275-295 nm); chalcones (365-390 nm) and (240-260); and anthocyanins (465-560) and (265-275).^[48]

Phenolic acids and polyphenols are compounds which can be found together with the flavonoids in plants. Some of phenolic acids show potential immunomodulating activity (e.g., rosmarinic, gentisic, chlorogenic, and caffeic acids). Polyphenols are polyphenylcarboxylic acids, and can be found in plants as esters, glycosides, or acylglycosides, especially in the species *Asteraceae* and *Labiatae*. Some examples are: caffeic acid, cichoric acid, rosmarinic acid, frulic acid, *p*-cumaric acid, and chlorogenic acids. Polyphenols show antioxidant and hepatoprotective activity and are assumed to contribute to the health of fruits and vegetables. Polyphenols can be extracted with a binary mixture of ethanol–water and analysed by a variety of analytical methods. Tables 2 and 3 show a selection of recent methods applied for the analysis of phenolic acids and polyphenols in plants.

Polyphenols (procyanidins) from *Vitis vinifera* were extracted from the fresh plant material with acetone for 24 h, filtered, then evaporated under reduced

ALVIIIAL I JAILU	Analyte	Sample Preparation	Chromatographic Conditions	Ref.	L)
la ubescens . pendula	Phenolics with non-flavonoid structure: 1-O-galloyl- β -d-(2-O-acetyl)- glucopyranose, 1-(4 ⁿ -hydroxyphenyl)- glucopyranose, gallic, chlorogenic, neo-chlorogenic, <i>cis</i> - and <i>trans</i> - forms of 3- and 5- <i>p</i> - coumaroylquinic acids.	Fresh leaves were transferred in methanol, ground with an Ultra-turrax for 3 min then let to stand for 60 min with continuous stirring. The mixture was centri- fuged and pellet was re-extracted twice with 15 mL of 80% methanol. The combined extract was evaporated in a rotary evaporator. The dry residue was dissolved in water and centrifuged.	Analytical and preparative HPLC Column: Spherisorb ODS-2 (250 × 4 mm, 5 µm). Mobile phase: $A = 5\%$ formic acid; $B = acetonitrile.$ Gradient: 100% A, 0–5 min; 0–30% B in A for 5–60 min; 30–60% B in A for 70– 80 min. F = 1 mL/min Detection with DAD, 280 nm, and the acquisition of UV spectra (210–370 nm) Preparative column: µBonda-	64	YSIS OF MEDICINAL PLANTS
			pak C ₁₈ (30 × 19 mm) Gradient elution: A = 2.5% acetic acid; B = 95% ethanol Spectroscopic UV, ¹ H and ¹³ C NMR, MS techniques were applied for the identifi- cation of these phenolics.		22-

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

_

Downloaded At: 20:48 23 January 2011

2250)		CIMPA	N AND GOCAN
	Ref.	50	51	52
	Chromatographic Conditions	Column: RP-18 LiChroCart ($250 \times 4 \text{ mm}$, $5 \mu \text{m}$) Gradient elution: $A = \operatorname{acctonitrile}$ and $B = 0.1 M o-phosphoricacid. 0-30 min (15\% \text{ A}^-85% B$) to ($30% A-70% B$) F = 0.7 mL/min UV detection at 310 nm.	Column: RP-C ₁₈ ($150 \times 4.6 \text{ mm}, 5 \mu\text{m}$) and C ₁₈ guard column, at 40°C . Gradient elution: A = acidified (1% of 0.1 M o-phosphoric acid) methanol, B = water; 0- 20 min (10% A-90% B) to (50% A-50\% B) F = 1 mL/min Detection 330 nm.	Column: LiChrospher 100 CH-18(2) Hibar (125 \times 4 mm, 5 µm); guard column LiChroCart (4 \times 4 mm, 5 µm) with LiChrospher 100 CH-18.
able 2. Continued	Sample Preparation	A sample of press juice was taken and filtered.	Dried sample (root, flower, stem and leaf) were extracted with 80% methanolic solution and the mixture subsequently sonicated for 10 min.	Two consecutive Soxhlet extractions of the herb with methanol, each of 1 h, the extract evaporated under vacuum at 40°C.
П	Analyte	<i>p</i> -Cumaric acid	Cicoric acid	Caffeic acid Caffaric acid Cicoric acid Chlorogenic acid Echinacosid
	Medicinal Plant	Echinacea purpurea		E. purpurea E. palida E. angustifolia

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF ME	DICINAL PLANTS		2251
52	53	54	tinued)
Gradient elution: A = water/ 0.1 N <i>o</i> -phosphoric acid (99:1), B = acetonitrile/ 0.1 N <i>o</i> -phosphoric acid (99:1). (95% A-5% B) to (75% A-25% B) in 20 min. F = 1 mL/min Detection at 330 nm.	Column: ODS Hypersil (200 × 4.6 mm, 5 µm). Elution under isocratic con- ditions: methanol/ water/ acetic acid (25:75:1). F = 1 mL/min, Detection at 254 nm.	 HPLC Column I: ODS Hypersil (200 × 4.6 mm, 5 μm); room tenp. Mobile phase: methanol- water-acetic acid (23 : 77 : 1) Column II: SymmetryTM C18 	$(250 \times 4.6 \text{ mm}, $
	Milled aerial parts of plant were extracted with methanol in a Soxhlet for 6 h. Methanolic extract were evaporated in a rotary vacuum evaporator at 50°C. Residues were dissolved in 30% metha- nol. The plant extract was purified on ODS and quaternary amine SPE columns.	Dried, pulverised samples of plant roots were extracted twice with methanol, for 1 h, under reflux. SPE extraction. The combined methanolic extracts were concentrated, and retained on a SPE C18 cartrige.	Eluates to pH 7.0–7.2 with
	Phenolic acids: Protocatechuic Chlorogenic, <i>p</i> -Hydroxibenzoic Vanillic, Caffeic, Syryngic, <i>p</i> -Coumaric, Ferulic	Free phenolic acids	
	Echinacea species: E. purpurea, E. angustifolia, E. multiflora, E. commutata, E. umbellate	Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. = Acanthopanax senticosus (Rupr. et Maxim.) Harms	

Downloaded At: 20:48 23 January 2011

225	2	CIMPAN AND GOCAN
	Ref.	
	Chromatographic Conditions	5 μm); temp. 30°C. Mobile phase: methanol- 0.001 M phosphoric acid (23 : 77) F = 1 mL/min Photodiode array detector, 254 and 280 nm Fluores- cence detector: excitation at 230 and 265 nm, emission at 350 nm.
Continued	Sample Preparation	5% sodium bicarbonate aqueous solution and passed through a quatem- ary amine SPE-cartridge. The analytes were eluted with 0.2 M phosphoric acid and methanol (1: 1 v:v). The eluates were adjusted to pH 3 with 1 M sodium hydroxide, and analysed by RP-HPLC. LL extraction. The methanolic extracts were concentrated in vacuum, diluted with hot water, filtered, then washed with petroleum ether and the organic layer rejected. The aqueous solution was extracted with 5% sodium bicarbo- nate, acidified with 36% HCl until pH 3.0, then extracted again with diethyl ether. Each of the
Table 2.	Analyte	
	Medicinal Plant	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF	MEDICINAL PLANTS	22	253
	55	56	inued)
	LC/MS experiments were carried out on a mass spectrometer equipped with a particle beam interface $[60^{\circ}C;$ ionization mode, 70 eV electron inpact (E1)]. Column: Ultrasphere ODS $(250 \times 4 \text{ mm}, 5 \mu \text{m})$ Linear gradient: $A = 0.045 \text{ M}$ accetic acid/ methanol (1:1), B = acetonitrile; (50% A-50% B) to $(10%A-90\% \text{ B}) in 45 min.F = 1 mL/min. FAB massspectra (NI) FAB-MS/MS(NI mode detection;daughter and parent ion)spectra were obtained.$	HPLC-DAD: Column: Nucleosil 188–5 C18 (125 × 4 mm, 5 µm)	(cont
ether extracts was evapo- rated to dryness, and the residues were dissolved in methanol (10 mL), giving fractions of free phenolic acids.	The roots were dried, finely powdered and exhaus- tively extracted with acetone/water (8:2). The acetone was removed in vacuum. The aqueous residue was extracted three times with petrol, then with chloroform and butylacetate, and concen- trated in vacuum. The crude extracts was dis- solved in methanol.	The plant material was air- dried at room temperature in the dark. Two types of	
	Nine rhataniaphenol constituents were determined in petroleum extract, in chloroform and in a commercial extract.	Caffeic and rosmarimic acid	
	Krameria triandra	Lamiaceae plants (Satureja hortensis,	

Downloaded At: 20:48 23 January 2011

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

2254	1		CIMPAN AND GOCAN
	Ref.		57
	Chromatographic Conditions	Mobile phase: solvent A was 1% formic acid, and solvent B was acetonitrile. The elution system was as fol- lows: 0–10 min, 10–13% B in A; 10–25 min, 13–70% of B in A; 25–29 min, 70% B in A; 29–30 min, 70–10% of B in A; 30–40 min, 10% of B in A F = 1 mL/min NMR: 1H-13C and the result compared with the HPLC analysis.	Column: ODS Hypersil (200×4.6 mm, 5 µm) Mobile phase: isocratic acet- onitrile/water/acetic acid ($20:80:1$) or methanol/ water/acetic acid ($25:75:1$). F = 1 mL/min Detection: 280 mm for rosmarinic acid, and 254 for other phenolic acids.
Table 2. Continued	Sample Preparation	Extracts were used: crude ethanolic extracts obtained in a Soxhlet apparatus (6 h) and methanolic extracts obtained by using a sequence of nonpolar and polar solvents.	Dry, pulverized samples were refluxed with methanol for 1 h, the extract concen- trated under reduced pres- sure. The dry residue was diluted with 30% metha- nol and passed through an C18 cartridge. The eluate containing phenolics was adjusted to pH 7.0–7.2 with 5% sodium bicarbo- nate aqueous solution
	Analyte		Free phenolic acids
	Medicinal Plant	Origanum vulgare, Origanum onites, Satureja thymbra, Satvia triloba)	Lamiaceae family Salvia officinalis L., Melissa officinalis L., Mentha piperia (L.) Hudson, Thymus vulgaris L., Lavandula officinalis Chaix, Rosmarinus officinalis L., Origanum majorana L.,

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

©2002 Marcel Dekker, Inc. All rights reserved. This m	EL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016 aterial may not be used or reproduced in any form without the express written permissi	on of Marcel Dekker, I
ANALYSIS OF MEI	DICINAL PLANTS	2255
	28	
	HPLC-MS Column: Aqua C18 ($240 \times 4.6 \text{ mm}$, $5 \mu \text{m}$) with aguard column C18 ODS ($4 \times 3.0 \text{ mm}$); temp. 25°C. Mobile phase: (A) 2% acetic acid in water, (B) 0.5% acetic acid in water and acetonitrile ($50 : 50$). The gradient program was: 10% B to 55% B ($50 \min$), 55% B to 100% B ($10 \min$), 100% B to 10% B ($10 \min$), F = 1 mL/min Detection: DAD with simul- taneous monitoring at 280 nm (catechins, proanthocyanidins and benzoic acids), 320 nm	man 370 nm (flavonols). MS: negative mode, m/z range 100–800.
and passed through qua- ternary amine microcol- umns. The phenolic acids were desorbed with 0.2 M phosphoric acid-methanol (1:1), adjusted to pH 3 with 1 M NaOH and ana- lysed by HPLC.	Fruits were extracted with aqueous acetone (70%) or ethyl acetate. Optional, the extracts were evaporated to dryness, redissolved in a small amount of water, retained on a silica gel C18 SPE cartridge, and the compounds of interest eluted with methanol.	
	Phenolic acid and flavonoids.	
Hyssopus officinalis L., Ocimum basilicum L. and Satureja hortensis L.	Malus sylvestris (apple) and Pyrus communis (pear)	

dicinal Plant	Analyte	Sample Preparation	Method	Ref.
asiatica	Sesquiterpenoids, guaianolides	Dried plant material was extracted with dichloro- methane by ultrasonifica- tion for 10 min at room temp. Extract evaporated to dryness at 40° C, redis- solved in dichloro- methane-aqueous metha- nol (1:1), and evaporated at 40° C till only the methanol fraction remain. This containes the polar sesquiterpenes.	Column: Li-Chrospher 100- RP8 (250 × 4.0 mm, 5 µm) Zorbax SB-C8 (75 × 4.6, 3.5 µm) Guard column: LiChrospher 100-RP8 (4 × 4 mm, 5 µm) Mobile phase: various methanol-water mixtures F = 1 mL/min DAD, monitoring wavelength 220 nm.	65
culus species, A. rubicunda A. rubicunda	Carotenoids: violaxanthin, neoxanthin, aesculaxanthin, lutein, β -carotene, β -cryptoxanthin β -citraurin and their <i>cis</i> -isomers.	Fresh plant material was extracted three times with methanol, and finally twice with diethylether. The extract was saponified in ether with 30% KOH– MeOH at room temp. The saponified pigments were stored in benzene at -20°C under nitrogen, away from light.	Column: Chromsyl C18 (250×4.6 mm, 6 µm) endcapped. Mobile phase: (A) 12% water in methanol, (B) methanol, (C) 30% dichloromethane in methanol in the follow- ing linear gradient: 100 A 2 min, to 50 A-50 B, 16 min, to 100 B 8 min, to 100 C, 7 min, 100 C 8 min. F = 1.2 mL/min Diode-Array Detection: $200 \leq 600$ mm	99

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Downloaded At: 20:48 23 January 2011

The dried plant material was maccarated in ethanol, then extracted with hexane fol- lowed by CH ₂ CI ₂ . The fractions were further pur- lifed by preparative HPLC. Inded by PLC. Inded	Diterpone The dried plant material was macerated in ethanol, then extracted with hexane fol- lowed by CH ₂ C1, The fractions were further pur- field by preparative HPLC. Preparative and analytical A6 mm-analytical, fractions were further pur- field by preparative HPLC. 67 Thitterpene 1 250 × 20 mm- fractions were further preparative 5 µm) 68 Thitterpene 1 250 × 20 mm- fractions were further preparative 5 µm) 68 Thitterpene 1 250 × 20 mm- fractions were further preparative 5 µm) 68 Thitterpene 1 250 × 20 mm- fractions 68 Thitterpene 1 2 2 20 mm- fractions Saponins) 10 0.0 100 mL methanol, soni- fractions 68 Outmain Flact 1 10 100 kmoming gradient elution: fractions upter stream fractorises were evaporated fractorises 2 A/28 B to 70 A/30 B fraction: UV at 200 m and due redissolved in 2 mL of fraction: UV at 200 m and fractorion: UV at 200 m and dreatoring fractions F = 1 mL/min 7 7 3 A/70 B, and held at fractorion: UV at 200 m and dreatoring fractoring fractorion: UV at 200 m and dreatoring fractoring fractoring	ANALYSIS OF MEDICINA	L PLANTS	2257
The dried plant material was macerated in ethanol, then extracted with hexane fol- lowed by CH ₂ Cl ₂ . The fractions were further pur- ified by preparative HPLC lowed by CH ₂ Cl ₂ . The fractions were further pur- ified by preparative HPLC. Ig of fine powdered root was extracted three times with 1g of fine powdered root was extracted three times with 10 mL methanol, soni- cated for 10 min and cen- trifugated. The combined extractes were evaporated of nitrogen, and the resi- due redissolved in 2 mL of 30 A/70 B, and held at this composition for the another 5 min. F = 1 mL/min Detection: UV at 200 mm and evaporative 13 mL/min Detection: UV at 200 mm and evaporative light scattering detector, operated at 40°C and the nitrogen pressure at 2.4 bar.	DiterpeneThe dried plant material was macerated in ethanol, then macerated with hexane fol- lowed by CH2,C1. The fractions were further pur- ified by preparative HPLC.Preparative and analytical $4.6 \mathrm{mm}-analytical,$ $4.6 \mathrm{mm}-analytical,$ $4.6 \mathrm{mm}-analytical,$ $1.30 \mathrm{mm}$ TriterpeneIg of fine powdered root was glycosidesPreparative HPLC. $1.30 \mathrm{mm}$ Ig of fine powdered root was glycosidesIg of fine powdered root was $1.30 \mathrm{mm}$ Preparative $1.5 \mathrm{mL}/\mathrm{min}$ $250 \mathrm{mm}$ InterpeneIg of fine powdered root was (rayonins)Column 100 $1234 \mathrm{mm}$ Imaterial was $1.30 \mathrm{mm}$ InterpeneIg of fine powdered root was $1.30 \mathrm{mm}$ Column $100 \mathrm{mm}$ SamoIf approxiblesIg of fine powdered root was $1.30 \mathrm{mm}$ Column $100 \mathrm{mm}$ SamoIf approxiblesIg of fine powdered root was $1.30 \mathrm{mm}$ Column $100 \mathrm{mm}$ SamoIf approxiblesIg of fine powdered root was $1.30 \mathrm{mm}$ Column $100 \mathrm{mm}$ SamoIf approxiblesIf a composition for the $1.30 \mathrm{mm}$ SamoSamoIf approxiblesIf approxiblesSamoSamo </th <th>67</th> <th>68</th> <th>tinued)</th>	67	68	tinued)
The dried plant material was maccrated in ethanol, then extracted with hexane fol- lowed by CH ₂ Cl ₂ . The fractions were further pur- ified by preparative HPLC. I g of fine powdered root was extracted three times with 10 mL methanol, soni- cated for 10 min and cen- trifugated. The combined extracts were evaporated to dryness under a stream of nitrogen, and the resi- due redissolved in 2 mL of methanol.	Diterpene The dried plant material was macerated in ethanol, then extracted with hexane fol- lowed by CH2Cl2. The firactions were further pur- ified by preparative HPLC. Triterpene 1g of fine powdered root was extracted three times with 10mL methanol, soni- cated for 10min and cen- trifugated. The combined extracts were evaporated to dryness under a stream of nitrogen, and the resi- due redissolved in 2 mL of methanol.	Preparative and analytical HPLC Column: Shimpak ODS RP-18 (250 × 4.6 mm—analytical, 250 × 20 mm— preparative, 5 µm) Eluent: actonitrile–water (7:3) F = 1, respective 15 mL/min Detection: UV 254 mm.	Column: Phenomenex Luna C18 column (150 × 4.6 mm, 5 µm). Mobile phase: water (A) and acetonitrile (B), in the following gradient elution: 72 A/28 B to 70 A/30 B in 30 min, in 12 min to 62 A/38 B, then in 10 min to 30 A/70 B, and held at this composition for the another 5 min. F = 1 mL/min Detection: UV at 200 mm and evaporative light scattering detector, operated at 40°C and the nitrogen pressure at 2 4 bar	(con
	Diterpene glycosides (saponins)	The dried plant material was macerated in ethanol, then extracted with hexane fol- lowed by CH_2CI_2 . The fractions were further pur- ified by preparative HPLC.	I g of fine powdered root was extracted three times with 10 mL methanol, soni- cated for 10 min and cen- trifugated. The combined extracts were evaporated to dryness under a stream of nitrogen, and the resi- due redissolved in 2 mL of methanol.	

2258	8		CIMPAN AND GOCAN
	Ref.	69	70
	Method	HPLC-ELS (Evaporative Light Scattering Detection Column: Discovery C-18 (150 × 4.6 mm, 5 µm) Mobile phase: water (A), acctonitrile (B) and reagent alcohol (C), with gradient elution: from 58A/21B/21C within 35 min to 52A/14B/34C, using a slightly concave gradient profile (Waters curve type 7). F = 1 mL/min. Detection: UV 200 nm. The ELS detector was set up to 40° C.	HPLC-MS-MS Column: Supersphere RP-18 (C-18) (250 \times 4 mm, 4 µm) Mobile phase: linear water- acetonitrile gradient from 0 to 88% acetonitrile over 25 to 60 min. F = 0.8 mL/min Detection at 220 nm MS:
Table 3. Continued	Sample Preparation	I g <i>C. racemosa</i> root powder was extracted three times with 3 mL methanol by sonication for 10 min. After centrifugation, the extracts were combined on a 10 mL volumetric flask and adjusted to the final volume with methanol.	Latex drained from the plant was extracted with metha- nol, centrifuged and the supernatant diluted with 200 mM NH ₄ OAc, and used for HPLC.
	Analyte	Triterpene glycosides: Cimiracemoside, H26-deoxyactein, and actein.	Diterpene esters of the tigliane and ingenane types.
	Medicinal Plant	Cimicifuga racemosa	Euphorbia leuconeura, Euphorbiaceae

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

was spin 50%, 22 mas used as nebulizer, curtain and collision gas in the MS-MS mode.	Column: LiChrosorb RP-18 71 Hibar (250 × 4 mm, 10 µm); Isocratic systems: A: water/methanol (70: 30), 1 mL/min B: water/acetonitile (80/20), 1 mL/min C: water/ tetrahydrofuran 80: 20), 1 mL/min D: water/methanol/ tetrahydrofuran (75: 5: 15), 1.5 mL/min. The best resolution was obtained with system D. Detection: 220 nm.	Column: Microsorb Spherical 72 C_{18} (100 × 4.6 mm, 3 µm) Semipreparative column C_{18} (250 × 10 mm, 5 µm); Mobile phase: 2-propanol/water (10:90) F = 1 mL/min Detection at 220 nm.	259 (continued)
	Dried, powdered, purified G. biloba L. leaf extract was treated with boiling ethyl acetate. Then con- centrated and extracted with chloroform, cooled, decanted and filtred. The solvent removed and the residue extracted with diethyl ether and dried over anhydrous sodium sulphate, then distilled under reduced pressure.	Extracts were purchased from different commercial sources. The extract were dissolved in 50% acetone.	
	Diterpenes: Ginkgolide A Ginkgolide B Ginkgolide C Sesquiterpene: Bilobalide	Ginkgolide A, Ginkgolide B, Ginkgolide C, Bilobalide B	
	G. biloba L.	G. biloba L.	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Downloaded At: 20:48 23 January 2011

226	0	(CIMPAN AND GOCAN
	Ref.	73	74
	Method	Column: Spherisorb C ₁₈ , col- umn (250 × 10 mm, 5 µm). Mobile phase: A: water/ methanol/THF (7:2: 1); B: water/acetonitrile/THF (7:2: 1); C: water/ methanol (67: 33). F = 1.0 mL/min (preparative) Detection: refractive index (RI) detector 3.10 ⁻⁵ full-scale, at 20°C.	LC-TSP-MS Column: Nucleosil C_{18} (125 × 4 mm, 5 µm) Mobile phase: methanol/ water (40: 60) F = 1 mL/min Detection: UV 220 mm TSP: vaporizer 62°C; source
Table 3. Continued	Sample Preparation	Leaves were dried as soon as possible after collection for 24 h at 70° C in an oven with forced ventilation. The dried leaves were pulverised and refluxed in 10% aqueous methanol for 15 min. The hot solution is filtred. The leaves were washed with 2% aqueous methanol, then extracted with 15% aq. methanol. After filtration the solution is transferted to the poly- amide column and drawn through the two columns at a rate of 1 drop/s and a SPE on C ₁₈ .	Leaves of <i>G. biloba</i> L. were extracted with methanol/water (1 : 1). Methanolic extract was then partitioned between ethyl acetate and water. The organic phase was analysed.
	Analyte	Ginkgolide A, Ginkgolide B, and Ginkgolide J Bilobalide	Ginkgolide A, Ginkolide B, Ginkgolide C, and Ginkgolide J Bilobalide
	Medicinal Plant	G. biloba L.	G. biloba L.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS	OF MEDICINAL PLANT	ſS	2261
	75	76	tinued)
225°C; filament on, 600 V and 200 mA; buffer, 0.5 M ammonium acetate at 0.2 mL/min; 1.2 s/scan.	Column: Inertsil ODS-2 (250 × 4.6 mm, 5 µm) Linear solvent gradient of A-B (A, acetonitrile; B, water) as follows: 0 min, 85 : 15 and 25 min, 100 : 0. F = 1.5 mL/min DAD set at 230 nm.	Column: RP-18 Novapak, 1(50 × 3.9 mm, 4 µm) Gradient elution: Acetonitrile/water (0.05% THF) 5 : 95 to 70 : 30 in 50 min F = 1 mL/min. F = 1 mL/min. Termospray: vaporizer, 100° C; source, 250° C. (a) Ammo- nium acetate buffer (0.5 M, 0.2 mL/min) or (b) diami- noethane buffer (0.5 M, 0.2 mL/min); P1 mode.	loo)
	The dried plant material was extracted with methanol, and the extract concen- trated under reduced pres- sure. The residue was suspended in water and partitioned with <i>n</i> -hexane, CH_2Cl_2 , EtOAc and <i>n</i> -BuOH.	Metanolic extract	
	Lupane type triterpenoids	A dimeric secoiridoid, lisianthoside	
	Helicteres angustifolia	Lisianthius seemanii (Gentinaceae)	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2262	2	CIMPAN AND GOCAN
	Ref.	12
	Method	HPLC-MS-MS Waters Spherisorb C18 narrow- bore analytical column (2.0 × 150 mm, 5 µm). Mobile phase: (A) water containing 0.1% acetic acid and 5 µM sodium acctate, and (B) acetoni- trile containing 0.1% acetic acid; Gradient from 25 to 40% (B) in (A) over 30 min. F = $200 \mu L/min$. or Waters Spherisorb ODS 2 C18 analytical column (250 × 4.6 mm). Isocratic water-acetonitrile (80 : 20) for 20 min, then gradient from 20 to 40% (B) over the next 40 min. F = 1.6 mL/min. The entire effluent was directed to the electrospray interface (140°C in positive ion mode, N ₂ as nebulizing and drying gas).
Table 3. Continued	Sample Preparation	Pulverised samples of ginseng roots were extracted with chloroform followed by methanol. Methanolic extracts were evaporated under reduced pressure at 35°C, the residue redis- solved in a small volume of methanol-water (1:1) and filtered immediately before LC-MS-MS. Pure 24(R)-pseudoginsenoside F1 was obtained after successive column chro- matographic purification by RP-LC on silica gel C18, with acctone-water (4:6) as mobile phase. Solutions of the reference ginsenosides were pre- pared in methanol-water (1:1, v/v), in the concentration range 12–9,600 ng/mL.
	Analyte	Ginsenoside (triterpene saponins)
	Medicinal Plant	Panax ginseng, Panax quinquefolius L.

Downloaded At: 20:48 23 January 2011

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS	2	263
48	62	inued)
Column: $46 \times 150 \text{ mm}$ packed with 3 µm hydrophobic C18. Mobile phase: (A) 50% acetonitrile; (B) 10 mM ammonium acetate. Gradient elution: linear change of solvent B from 70 to 50% in A in the first 30 min, and to 10% in the next 30 min, maintained 10 min before returning to 70% B in A in 2 min. F = 1 mL/min MS: nitrogen as nebulising gas; full- scan spectra in the range m/z 300–2300.	Column: LiChrosorb RP-18 (250 \times 4 mm, 10 µm); temp. 21°C. Isocratic elution: methanol/ water (30:70) F = 2 mL/min. Detection at 220 nm.	(cont
Powedered plant material (300 mg) was extracted with 10 mL chloroform, 3 h reflux, then filtrated and the chloroformic extract discarded. The solid residue was extracted again with 10 mL metha- nol, 3 h reflux; the metha- nolic extract brought to dryness under vacuum. The residue containing ginsenosides was redis- solved in 3 mL water. The aqueous solution was passed through a SEP- PAK C18 cartrige, washed with 10 mL acetonitrile 50%. The solution was filtered prior to HPLC-MS.	Dried and powdered callus tissues of <i>P. serrulatus</i> were extracted twice with boiling ethanol. Ethanol was removed, residue was washed with hot water. Aqueous solution was	
Ginsenosides, ginsenoside Rf, 24(R)-pseudoginsenoside	Non-esterified glucoiridoids: Harpagide, Aucuboside, Loganine, Plantarenaloside Valerian-type	
P. guinguefolius P. quinquefolius	Pentemon serrulatus Menz.	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Downloaded At: 20:48 23 January 2011

226	4		CIMPAN AND GOCAN
	Ref.	80	81
	Method	Column: Intersil ODS-3 (150 × 4.6 mm); temp. 30°C. Mobile phase: methanol- water (80:20) F = 1.0 mL/min Photodiode array detector.	The results were compared with those obtained by high-speed counter- current chromatography. Column: Zorbax-ODS (150 × 4.6 mm, 5 µm); Zorbax-SB guard column Mobile phase: methanol- tetrahydrofuran-glacial
ble 3. Continued	Sample Preparation	evaporated under reduced pressure. Subsequent puri- fication on alumina col- umn. Glucoiridoids were eluted with methanol. SPE clean-up of crude extracts was performed on C ₁₈ - bonded silica cartridges. Roots were extracted with methanol at room temp. The solvent removed under reduced pressure and the residue redis- solved in water. The aqueous solution was	extracted six times with light petroleum, and the combined extracts evapo- rated to dryness. Solutions of 5 mg/mL were prepared in the mobile phases. Dried roots were extracted with ethanol, methanol, acetone, <i>n</i> -butanol, ethyl acetate and tetrahydro- furan, in a microwave oven
Ta	Analyte	glicoiridoids: 8-epi-Valer- osidate, Penstemide, Ser- rulatoloside, Serrulatoside Diterpenes (tanshinones)	Diterpenes, tanshinones
	Medicinal Plant	Salvia miltiorrhiza	Salvia miltiorrhiza bunge

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS	OF MEDICINAL PLANTS	2	265
	76	82	inued)
acetic acid-water (16:37.5:1:45.5) F = 1 mL/min Detection: UV 254 nm.	Column: RP-8 Nucleosil (125 × 4 mm, 5 μ m) Gradient elution: Acetonitrile/water (0.05% THF) 2:98 to 7:93 in 30 min and 7:93 to 37:63 in 30 min. F = 1 mL/min. Termospray: vaporizer, 110°C, source, 220°C; ammonium acetate buffer (0.5 M, 0.2 mL/min); positive ionization (PI) mode.	Column: ProntoSIL C30 reversed-phase $(250 \times 4.6 \text{ mm}, 3 \mu\text{m})$, temp. 22°C Mobile phase: for carotenoid stereoisomers: binary mixtures of acetone and water for spinach extracts: isocratic mixture of acetone–water (84 : 14) for	(cont
at 80°C, with intermitent power on and off to avoid the boiling. All solvents extracted the same amount of tanshinones.	Methanolic extract	Pure all-E carotenoid stan- dards were prepared as solutions in chloroform, 4 mg/mL. The isomeriza- tion was carried out by adding one drop of a solution of one iodine crystal in 2 mL hexane to the pure all-E standards, followed by exposure to	
	Iridoid and secoiridoid glycoside represent a large group of cyclopentane pyran monoterpenoids. Phlomiol and seasamo- side.	Carotenoids: lutein, zeaxanthin	
	Sesamum angolense (Pedaliaceae)	Spinacia oleracea (spinach)	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

_

Downloaded At: 20:48 23 January 2011

2266

CIMPAN AND GOCAN

		Table 3. Continued		
Medicinal Plant	Analyte	Sample Preparation	Method	Ref.
		sunlight for a few hours, then kept in the dark at -40°C. The extraction of carotenoids from spinach was done according to the literature.	21 min, then 4 min linear gradient to acetone-water $(97:3)$ maintained until the end of the chromato-graphic run at 40 min. F = 1 mL/min Detection: absorbance at 450 nm MS: positive ion mode in a mass range of m/z 200–800; nitrogen as used gas.	82
Tetrapleura tetraptera	Saponins: four aridanin derivatives	The dried powdered pulp of fruits was extracted with methanol.	LC-TSP-MS Column: μBondepak (300 × 3.9 mm, 10 μm) Gradient elution: water/ acetonitrile 30 : 70 to 80 : 20 in 30 min;	74

Downloaded At: 20:48 23 January 2011

83 Detection: 220 nm (valerenic 270°C, filament off; bufacid related compounds), Mobile phase: MeOH-H₂O vaporizer 100°C source acetate, at 0.2 mL/min, fer, 0.5 M ammonium Column: ApexPrep. ODS 255 nm (valepotriates). $(250 \times 4.6 \text{ mm}, 8 \mu \text{m}),$ Detection: 206 nm. TSP: 0.5% H₃PO₄, pH=2 $F = 1.5 \,mL/min$ F = 1 mL/min1.5 s/scan. (80:20)The roots samples were dried finely milled powder was extracted with methanol, filtered and analysed by HPLC. at 30°C for 72 h. The Sesquiterpenoids (valerianic acid, valerian, valepotriates) V. wallichii, V. edulis) Valeriana species (V. officinalis,

ANALYSIS OF MEDICINAL PLANTS

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

CIMPAN AND GOCAN

pressure to remove acetone. The solutions were diluted with water, the procyanidins precipitated with 0.1 M caffeine solution, centrifuged and the supernatant was applied to a C_{18} SPE cartridge. The adsorbed phenolics were eluted with methanol and, together with the precipitate, was dissolved in methanol. The procyanidines can be analysed directly by NP-HPLC or they can be thyolized with a 0.08 M HCl solution in MeOH, containing 12% v/v benzyl mercaptan, and analysed by RP-HPLC. The chromatographic conditions were: LiChrospher RP-18 column (250 × 4 mm, 5 µm) with a guard column (10 × 4 mm) containing the same packing material. Mobile phase: binary gradient (A) 1 mL 85% H₃PO₄ in 1 L H₂O, and (B) methanol; linear gradient from 20 to 70% B for 35 min, 90% B for 5 min and to 20% B for 5 min. The flow rate was 1 mL/min and the detection wavelength set at 280 nm.^[59]

Catechins were analysed from Malus pumila by liquid chromatography. The fruits were homogenized in potassium pyrophosphate 0.1% (w/w) at 4°C for 24 h. The juice was centrifugated and filtered. The filtrate (juice) was applied to a Sepabeads SP-850 preparative column $(285 \times 25 \text{ mm})$ and the column was washed with water to remove soluble components. The crude apple polyphenol fraction was obtained after elution with 80% ethanolic eluent. Ethanol was removed to obtain a concentrated crude apple polyphenol fraction, and a portion of this fraction was loaded onto a TSG gel Toyopearl HW-40EC column $(285 \times 25 \text{ mm})$. This column was washed with water, then the phenolic compounds were eluted with 40% aqueous ethanol and 60% aqueos acetone. The fraction eluted with 40% ethanol contained, mainly, monomeric catechins, dimeric catechins, and phloretin glycosides, and was further purified using Sep-pak C₁₈ ENV to eliminate phloretin glycosides. The resulting solution and the latter 60% aqueous acetone eluate containing, mainly, oligomeric catechin were mixed and the solution was lyophilized. The characteristic profile of catechin in the UV spectrum is at 280 nm. The identification of catechin oligomers was performed by matrix-assisted laser desorption/ionization time-offlight MS and FAB/MS.^[60]

Various catechins and epicatechins were analyzed from *Crataegus* by RP-HPLC. The dried leaves were extracted with aqueous acetone (70%) for 15 min. The suspension was percolated through a column and the extract was evaporated under vacuum at 30°C. Methanol was added to the residue to produce a 50% aqueous solution, further purified by SPE on Sep-Pak tC₁₈ cartridges. RP-HPLC was performed on a LiChrosorb RP-18 column ($250 \times 4 \text{ mm}$, 5µm) protected by a guard column ($10 \times 4 \text{ mm}$) of the same material, at 24°C. The gradient elution involved solvents: (A) methanol, and (B) 0.5% *o*-phosphoric acid in water, following the profile (18% A–82% B) to (24% A–76% B) in 10 min, then constant from 10–20 min, (24% A–76% B) to (40% A–60% B) in 25 min, then 100% A from 45–50 min and then reconditioning with the starting concentration. The flow rate was 1 mL/min and

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

2269

the detection was set at 280 and 220 nm. Spectra were recorded in the range 190 to 600 nm.^[61]

TERPENOIDS

The large class of terpenoids includes the compounds with a triterpenic and steroidal structure (saponins, sterols, cardiotonic glycosides), but also the compounds with an isoprenic structure, such as volatile oils, terpenes (bitter principles) and carotenoids.

The volatile oils are aliphatic or aromatic hydrocarbons, aldehydes, alcohols, acids, esters, etc., and are widely distributed in nature. Structurally, the volatile oils are monoterpenes, sesquiterpenes, and azulenes. Volatile oils are obtained by distillation with water, or with non-polar solvents. The most used method for their analysis is GC, but some HPLC methods are reported in the literature on a silica stationary phase and a binary mixture, *n*-pentane/water, as mobile phase.^[62] LC-MS methods have also been applied.^[63] Standardized extracts of Ginkgo biloba leaves contain large quantities of terpene-like compounds and are mainly used in the treatment of peripheral and cerebral circulation disorders, or as a remedy against asthma, coughs, bladder inflammation, blenorrhagia, and alcohol abuse. The leaf extracts contain biflavones, flavonol glycosides, and terpene lactones. A method based on liquid chromatography, coupled with electrospray mass spectrometry, has been reported for the analysis of terpenoids in G. biloba extracts. This method allows the rapid isocratic separation of underivatized ginkgolides (GA, GB, GC, and GJ) and bilobalide at very low levels (10 pg on the column) and their quantitative detection by external standardization with relative standard deviations of 3 and 5% for intra- and inter-day analyses, respectively.^[63]

The terpenes (bitter principles) can be found in different species such as: Gentianaceae, Asteraceae, Labiatae, Fabaceae, Rutaceae, Asclepiadaceae, Papaveraceae, Menispermiaceae, Solanaceae, etc. This group of compounds doesn't have a uniform composition; it includes monoterpenes, sesquiterpenes, diterpenes, and triterpenes. The bitter principles are barely soluble in water, but are soluble in organic solvents, and can be extracted into ethanol, water, or chloroform. The biological activity includes chronic gastritis, anorexia, antibiotic activity, etc.

Carotenoids are compounds with a terpenoid structure with 30–50 carbon atoms in the molecule. Carotenoids are widely spread in nature, being the yellow/red pigments which can be found together with chlorophylls. Carotenoids have a provitamin A structure and have an important biological activity in the visual process and regarding the epithelial tissue. These compounds can be

CIMPAN AND GOCAN

extracted in non-polar solvents and can be analysed by liquid chromatography (TLC, HPLC, etc.).

A mixture of terpene reference substances was analysed by coupling a commercial capillary HPLC system with a diode array spectrophotometric detector and a custom-built nuclear magnetic resonance (NMR) flow microprobe. The flow from the HPLC was stopped when a peak of interest had reached the NMR flow cell. The system featured a light-guided flow cell for UV–Vis absorbance detection via a photodiode array. The column was a Symmetry 300 C_{18} (150×0.32 mm, 5µm) and the pressure was monitored by the HPLC instrument. The mobile phase was a mixture of acetonitrile–D₂O (70:30, v/v).^[64] Table 3 contains some examples of terpenoid analyses by HPLC.

ALKALOIDS

Alkaloids can be found in many plants, have various structures, and have been used for a long time for their biological activity. Many pharmacological activities have been reported (antiarrhythmic, hypotensive, platelet-aggregationinhibiting, histamine-antagonizing, anti-flagellated protozoa, etc.).

An interesting review describes the analysis of isosteroidal alkaloids from *Fritillaria* species by different analytical methods, including HPLC. The described alkaloids do not contain strong chromophores for a direct UV detection, and a pre-column derivatization must be performed. The UV-absorbing groups were introduced via esterification of hydroxyl groups in the alkaloids using 1-naphthoyl chloride with thionyl chloride as a catalyst. The resulting mixture was analysed by HPLC on a Nova-Pak C₁₈ reversed-phase column (150 × 3.9 mm, 4 µm) using a simple isocratic mobile phase of methanol containing 0.2% diethylamine, and detected at 224 nm.^[84] Table 4 includes some examples of alkaloid from plants analysed by HPLC.

COUMARINS

Coumarins (α -benzopyrones) are natural derivatives of benzopyrane with a lactonic structure. The name comes from "coumara" the name of Tonka seeds which contain large quantities of coumarins. Coumarins can be found in numerous species: algae, mushrooms, and lichens, but also in superior plants (Umbelliferae, Rutaceae, Labiatae, Orchidaceae, etc.). Biochemically, coumarins are formed by photosynthesis from phenylalanine and cinnamic acid.

As crystals, coumarins have blue, green, or violet fluorescence, show a good absorbance of the UV light, being an effective UV-screen. Many of them are thermally labile. Coumarin derivatives are biologically active on the nervous

ANA	LYS	IS OF MEDICINAL PLANTS 22	71
erwise	Ref.	86	(pənu
troportions Are v/v Unless Oth	Method	HPLC-DAD Column: Merck Hibar C18 (250 × 4 mm, 10 μm), temp. 26°C Mobile phase: acetonitrile- 0.1 M phosphate buffer- glacial acetic acid (15:85:1), pH 3.9 F=0.7 mL/min Detection: 300 nm. Detection: 300 nm. Column: Waters μ Bondapak Clumn: Waters μ Bondapak C18 RP-column (300 × 3.9 mm, 10 μm), temp 26°C	, (conti
)=Diode-Array Detection; All F	Sample Preparation	Powdered leaves were soaked with ethanol for 24 h, the extract filtered and con- centrated. The concen- trated solution was treated with 5% acetic acid, warmed for 15 min and filtered. The filtrated was defatted with hexane, basified with ammonia (pH 9.0), then extracted with chloroform. The chloroformic extract con- tains pure vasicine and vasicinone, which were isolated by column chro- matography over silica gel with chloroform/ metha- nol/ethyl acetate mixtures as mobile phases with incresing polarity. Powdered leaves were extracted with 90% methanol (3 × 30 mL, 12 h each) at room temp. The	
ılysed by HPLC (F=Flow Rate; DAI	Analyte	Quinazoline alkaloids, vasicine and vasicinone vasicine and vasicinone vasicine and vasicinone	
<i>Table 4.</i> Alkaloids Ana Stated)	Medicinal Plant	Adhatoda vasica Catharantus roseus L.	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Downloaded At: 20:48 23 January 2011

2272			CIM	IPAN AND GOCAN
		Ref.		87
		Method	= 0.6 mL/min Mobile phase: acetonitrile- 0.1 M phosphate buffer- glacial acetic acid, 38:62; 0.3, pH 4.14 Detection: multidimesional UV-Vis detector, 254 nm.	HPLC-DAD Column: Luna C18 (250 × 4.6 mm, 5 μm) Mobile phase: linear gradient from (A) [acetonitrile- 0.2% phosphoric acid (85%), 50:50, adjusted
	. Continued	Sample Preparation	 alcohol extract was fil- F tered, concentrated in vacuum to 10 mL, diluted with water 10 mL, acidified with 3% HCl (10 mL) and washed with hexane (3 × 30 mL) The aqueous portion was basified with ammonia at pH 8.5, extract was washed with water, dried over sodium sulphate, and concentrated under vacuum. The residue was redissolved in 10 mL methanol. 	The plant dried powder was extracted with 95% etha- nol. The extract was con- centrated and the obtained residue containing the alkaloids was extracted with 0.1 M HCl. The aqu-
	Table 4	Analyte		Bisbenzylisoquinoline alkaloids
		Medicinal Plant		Dehaasia triandra (Berberidaceae, Menispermaceae, Monimiaceae, Ranunculaceae, Lauraceae)

Downloaded At: 20:48 23 January 2011

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS		2273
	88	(pənu
with ammonia water (5%) to pH 8.0] to (B) [acetonitrile–0.5%–phospho- ric acid (85%), 80:20, adjusted with ammonia water (5%) to pH 8.0]. Gradient profile of 100% A–100% B/ 0–15 min followed by 100% B/ 0–15 min. (= 1 mL/min Detection: 215 mm; spectra in the range 200–400 nm. HPLC-ESI-MS Mobile phase: ammonium acetate buffer-acetonitrile (42:58); the buffer prepared as above. = 0.1 mL/min Positive ion mode	Column: Nova-Pak C18 column (150 × 3.9 mm); temp. 30°C Mobile phase: methanol-water-35% acetic acid (35:65:0.5) F = 0.8 mL/min Detection: UV 290 mm.	(conti
eous layer was extracted with chloroform before (fraction A) and after (fraction B) the alkalinisa- tion with ammonia water to pH 9.0. Fraction A contained the non-pheno- lic alkaloids and fraction B contained both phenolic and non-phenolic alka- F loids. The fractions were concentrated and redis- solved in a small amount of methanol.	Crude plant material was extracted with acidified water (pH 4 with 1 M HCl) by refluxing on a water bath for 1 h then on ultra- sonic bath for 10 min. The filtered solution was used for HPLC.	
	2,3,5,6-tetramethylpyrazine	
	Ephedrae herba	

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

227	4	CIMPAN AND GOCAN
	Ref.	68 66
	Method	 HPLC-ELSD (Evaporative Light Scattering Detection) Column: Supelco reversed- phase C8 (150 × 4.6 mm, 3 μm), temp. 28°C. Mobile phase: acetonitrile- methanol-water (6.5: 3.5: 3.0) containing 0.006% triethylamine F = 1 mL/min Temp. of detector drift tube and LTA were set at 65°C. Nitrogen flow = 2.64 stan- dard L/min, five bar neb- ulising gas. HPLC-DAD: Column: Merck Durasil C18 (250 × 4.6 mm, 10 µm); temp 26°C Mobile phase: acetonitrile- 0.1 M phosphate buffer- glacial acetic acid, 20: 80: 0.4) pH 3.8 F = 1 mL/min
4. Continued	Sample Preparation	Dried sample powder was extracted with diethyl ether pre-alkalized with ammonium hydroxide and internal standard solution (1 mg/ mL) was added. The mixture was mechan- icaly shaken for 2 h, centrifugated, and the supernatants evaporated to dryness. The residue was redissolved in a small quantity of methanol and was subjected to HPLC- ELSD analysis. Samples of air dried and powdered capsules (1 g) was extracted with metha- nol three times (10 mL each for 3 h); the com- bined extracts were fil- tered, concentrated under vacuum, and made up to 1 mL in volume in metha- nol, which was filtered again before HPLC.
Table	Analyte	Non-chromophoric alkaloids: verticine, verticinone, isoverticine, ebeiedinone, hupehenine, ebeiedine, peimissine, imperialine. Morphine, codeine, oripavine, codeinone, reticuline, thebaine, papaverine, narcotine
	Medicinal Plant	Fritillaria (Bulbus Fritillariae, F. cirrhosa, F. thunbergii, F. hupehensis) Papaver sominiferum L.

ANALYSIS	OF MEDICINAL P	LANTS	22
91			92
HP-IPLC (high-performance ion-pair liquid chromato- graphy) Column: Hypersil BDS C8 (250×4.6 , 5μ m); temp 40° C.	 Mobile phase: (A) hexane-1-sulfonic acid in 1% aqueous phosphoric (pH 3.2); (B) 100% acetonitrile. Gradient program: 0-7 min, isocratic at 20% B; 7-25 min, jump to 40% B; 	25–28 min, jump to 60% B; 28–33 min, jump to 80%; 33–35 min, isocratic at 80% B; 35–40 min, jump to 20% B. F = 0.8 mL/min Detection: 220 nm; spectra 200–350 nm.	HPLC Column: Symmetry C18 column ($250 \times 4.6 \text{ mm}, 5 \mu \text{m}$) Mobile phase: (A) 0.01% TFA in ² H ₂ O, kept con- stant at 5% of the overall solvent mixture; (B) 0.01% TFA in ¹ H ₂ O; (C) MeCN, was added to A
Powdered plant material was extracted with 1% solution of tartaric acid in methanol under reflux. The cooled, filtered extract was evapo-	rated to dryness at 44°C. The residues were dis- olved in a small quantity of 0.05 M hydrochloric acid for the cation- exchange SPE. The alka- loids were eluted from the	sorbent with different mixtures of methanol- ammonia. The fraction were evaporated to dry- ness and the residue dis- solved in methanol, ready for chromatography.	5 g of dried and ground twigs were extracted with a mixture of water (pH 2 with TFA-triffuoracetic acid)–MeCN (8 : 2) (ultra- sonic bath, room temp., 2 h). The extract solution was filtered and lyophi- lized. A 4.5-mg amount of
Pyrrolizidine alkaloids			Dioncophylline A, <i>N</i> -methyl- dioncophylline A, koru- pensamine A, ajmalicine hydrochloride, and (–)-nicotine.
Symphytum sp. (comfrey), Petasites hybridus and Petasites albus (butterbur), Tussilago farfara (colts- foot), Emilia coccinea	(tassel flower) and <i>Doro-</i> <i>nicum columnae</i> (leopard's bane).		Triphyophyllum peltatum (Dioncophyllaceae)

Table	4. Continued		
icinal Plant Analyte	Sample Preparation	Method	Ref.
	this extract was redissolved in 300 µL ² H ₂ O-MeCN (8:2) and filtered prior to HPLC-NMR.	and B to make up the full percentage of 100%. The HPLC gradient: 0 min 90% B, 12 min 75% B, 19 min 65% B, 25 min 55% B, 30 min 35% B. F = 1 mL/min Detection UV 254 nm NMR spectra of the stan- dards alkaloids. HPLC- ESI-MS-MS Nitrogen- sheath and auxiliary gas, argon-collision gas. Posi- tive ions were detected by scanning from 200 to 500 u.	92

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2

CIMPAN AND GOCAN

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

system level, and some of them have an anticoagulant activity. Coumarin glycosides are soluble in water and polar organic solvents, while terpenylcoumarins and furanocoumarins are soluble in non-polar organic solvents. The coumarins have been analysed by TLC or HPLC, and easily detected due to their natural fluorescence. HPLC has also been extensively used, mainly with reversed phase stationary phases.

Coumarins from *Citrus aurantifolia* (Bergamottin, 5-Geranyloxy-7– methoxycumarin, 8-Geranyloxypsoralen, Isoimperatorin, Xanthyletin, Citropten, Phellopterin, Bergapten, Imperatorin, Isopimpinellin) were analysed by HPLC on a μ Porasil normal phase column (300 × 3.9 mm, 10 μ m) and ethyl acetate/hexane (1:4, v/v) as mobile phase or on a Nova-Pak C₁₈ column (5 μ m) and water/methanol (8:2, v/v), water/acetonitrile (1:1, v/v) as mobile phases. Detection was performed at 335 and 310 nm.^[93]

Coumarin glycosides (Daphnin, Daphnetin-8- β -glucoside) were extracted from dry, powdered *Daphne acuminata* (Royle) by percolating four times with cold methanol. Extracts were evaporated to a semi-solid residue that was suspended in water and extracted four times with chloroform, then evaporated and partitioned between light petroleum and 95% methanol (1 : 1, v/v). The methanolic phase was used for chromatography after a treatment with charcoal followed by evaporation of the solvent. The residue was chromatographed on silica gel by step gradient elution: light petroleum, benzene, and chloroform/methanol. The chloroform/methanol (1 : 9, v/v) fraction contained daphnetin-8- β -glucoside and daphnin. ¹³C-NMR was used for compound identification.^[94]

Coumarins from *Archangelica officinalis* were analysed by liquid chromatography, HPLC and TLC, on reversed and normal phase, respectively. Twelve coumarins (0.1% solutions in methanol) and 1% solution of *Archangelica* extract were injected in a Alltech RP-18 column ($250 \times 4.6 \text{ mm}, 5 \mu\text{m}$) and separated with a mixture of methanol-water as mobile phase (8:2;7:3;6:4, v/v). The flow rate was 1 mL/min and the detection wavelength 254 nm. The fractions of coumarins, partially separated by HPLC, were collected, evaporated at 30°C, redissolved in a small amount of methanol, and separated by HPTLC on silica gel layers and dichloromethane, *n*-heptane, and ethyl acetate mixtures as mobile phases.^[95]

ALKAMIDES

Akamides are a distinct class of natural products, containing an aliphatic acid (mostly unsaturated) residue linked with various amine moieties. Approximately 200 alkamides have been isolated from nature.^[96] It is well known that alkamides from *Echinacea* species have immunostimulating properties^[97] and 15 new isobutyl- and 2-methyl-butylamides have been identified in *Echinacea angustifolia* and *purpurea* roots.^[98]

a

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2278

CIMPAN AND GOCAN

Soxhlet extraction with chloroform is widely used for the dried, powdered plant material. The extract is usually evaporated to dryness and the residue redissolved in a small volume of ethanol.^[98,99] Methanol is also used for extraction by different methods: Soxhlet, high speed agitation, and sonication.^[100]

Alkamides have been separated from E. purpurea, E. pallida and E. angustifolia by high performance liquid chromatography with a photodiode array detection system. The experimental conditions were as follows: Hibar column (125×4 mm, 5 µm), with LiChrospher 100 CH-18(2) packing material; LiChroCART precolumn (4×4 mm, 5μ m) with LiChrospher 100-CH; linear gradient elution: A = water and B = acetonitrile. The solvent gradient was from 40 to 80% B within 30 min, and the flow rate was 1 mL/min. Detection in the UV at 210 nm and 254 nm. More than 20 compounds have been separated from each sample (roots and aerial parts). HPLC determination of the main amide constituents dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutyl-amide (8/9) in root and aerial parts showed that E. purpurea roots contained 0.004–0.0039% and E. angustiflia roots, 0.009–0.151%, respectively. The total amount of alkamides was lower in the aerial parts as compared with the roots. The concentration of 8/9in the herb was found to be 0.001-0.003%. The various structural types of alkamides could be distinguished by their UV spectra. Alkamides with a 2,4diene moiety showed an absorption maximum at 259 nm, while 2-monoene compounds had an absorption maximum at 210 nm. Additional olefinic groups, as in compounds 8 or 9, resulted in a shoulder at 230 nm.^[98,101]

Alkamides can be separated on a RP-C₁₈ column ($150 \times 4.6 \text{ mm}$, $5 \mu \text{m}$) with a C_{18} guard column, at 40°C, but using slightly modified conditions. The eluted peaks were detected at 254 nm.^[100] Mobile phase was a gradient mixture of water and acetonitrile, starting with 40% acetonitrile for 10 min followed by a linear gradient to 53% acetonitrile at 35 min. E. purpurea plants collected from two sites were analyzed for alkylamides content at four growth stages: pre-flower, flowering, mature, and senescent. Total alkylamide concentration in the root, stem, and leaf decreased throughout the first growing season, while the concentration in flowers increased. In mature plants, the root contained about 70% of the total alkylamides and approximately 20% in flower, 10% in stem, and 1% in leaf tissue. The relative proportion of individual alkylamides in the root did not change during plant growth. Quantification was performed by the external standard method. The reference compound was trans, trans-2,4-dodecadienal, initially calibrated against an isomeric mixture of compound (8/9),^[98] leading to a conversion factor of 0.978. The reference compound was used for all quantification calculations of alkylamides, and the same response factor and similar extinction coefficients were assumed for all alkylamides.

Alkamides in roots and achenes of *E. purpurea* (L) Moench were analysed by HPLC–electrospray mass spectrometry (ES-MS) with emphasis on the difference between the chromatographic "fingerprints" for the two samples.^[99]

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

Nine alkamides were identified in the root of *E. purpurea*, similar to other works.^[98] The technique enables the identification of small peaks which were unidentified in previously published studies^[98,102] due to the fact that no standards were available for the comparison of retention times. The isomeric pair, tetraene (8/9), was purified as a standard for the quantification of alkamide content in *E. purpurea* roots and achenes, as well as for the achenes of *E. angustifolia* DC and *E. pallida* Nutt.

Alkamides in *E. Pallida* (Asteraceae) were analysed by HPLC, using isocratic conditions, on a silica gel C_{18} column (7.5 cm, 3 µm), mobile phase: acetonitrile–water (6:4, v/v), flow rate 1 mL/min, and UV detection at 210, 260 nm. The plant material was extracted with 95% aqueous ethanol for 24 h under mechanical agitation. Filtered extracts were concentrated in vacuum.^[103]

POLYACETYLENES

Eleven polyacetylenes were isolated from the aerial and subterranean parts of water hemlock, Cicuta virosa L. (Apiaceae, Apioideae), including isocicutoxin, isocicutol, and two incompletely characterised isomers with two *cis*-double bonds (falcarindiol, (1,8E,10E)-hetptadecatriene4,6-diyn-3-ol, already known from other Apiaceae, and the novel polyacetylene (1, 8E/Z, 10E, 12E)heptadecatetraene-4,6-diyn-3-ol).^[104] Keto compounds, postulated to occur in water hemlock, could not be detected. Fresh plant material was extracted with methanol at room temperature for several days after mincing in the solvent. The methanol extract was evaporated at 40°C, and extracted with a petroleum ether/diethyl ether mixture (1:1, v/v). The concentrated extract of the subterranean parts of the plants was used for analytical and preparative separation of polyacetylenes. HPLC was performed on a Spherisorb S5 ODS2 column $(290 \times 4 \text{ mm})$ with gradient elution, methanol 60 to 100% in 20 min in aqueous buffer (o-phosphoric acid 0.015 M, tetrabutylammonium hydroxide 0.0015 M, pH=3), flow rate 1 mL/min. Detection was carried out with a diode array spectrophotometer at 230 nm. The compounds with two hydroxyl groups show retention times in the range 10–15 min, and those with only one hydroxyl group in the range 17–20 min. The elution order of the compounds was according to decreasing polarity. The structures of the separated substances were identified by UV, IR, ¹H-, and ¹³C-NMR spectra.

MISCELLANEOUS

The screening of active compounds in *Gastrodia elata Blume* (Orchidaceae), a plant used in Chinese folk medicine, was performed by extraction from

2280

CIMPAN AND GOCAN

dried roots with 75% ethanol by refluxing on a water bath at 80°C for 1 h, then placed in an ultrasonic bath for 20 min. The ethanolic extracts were filtered and the organic solvent removed with a rotary evaporator at 40°C under vacuum. The residue was diluted to a proper concentration with methanol, and the sample was filtered through a 0.45 μ m membrane before HPLC. The ethanolic extracts, dissolved in water, were extracted with petroleum ether to remove esters. Then, the aqueous solution was successively extracted with ethyl ether and butanol, three times, respectively. The organic solvents were removed with a rotary evaporator at 40°C under vacuum to obtain ethyl ether and butanol extracts. Each of them was redissolved in methanol and filtered before HPLC. HPLC was performed on an ODS Zorbax SB-C₁₈ column (250 × 4.5 mm, 5 μ m) temp 30°C, mobile phase: methanol–water–isopropyl alcohol (35:55:10, v/v), flow rate 0.4 mL/min, and detection at 270 nm.^[105]

The chromatographic fingerprints of soybean seeds and roots obtained from the phytoalexins (glyceollins, daidzein, genistein) separation were investigated for reproducibility. Dried plant material powder was successively extracted with hexane, under reflux, for 2 h, then with methanol for 2 h. The hexane extract was evaporated to dryness and the residue redissolved in 1 mL hexane. The methanolic extract was evaporated under reduced pressure at 40°C to provide a clear oil. The clear oil was diluted with 10 mL methanol, and 1 mL of the resulting solution was evaporated and the rest was partitioned between 50 mL water and 50 mL dichloromethane. Slightly modified procedures were applied too. RP-HPLC was performed with a Nova-Pak C_{18} column (150 × 3.9 mm, $4 \mu m$) with a two-component gradient mobile phase: (A) methanol; (B) aqueous buffer made from 0.01 M KH₂PO₄ (pH 2.4 with HCl) and 0.1% Et₃N (final pH about 2.46). (A) increased from 5% to 55% over 50 min; (A) maintained at 55% for 10 min; then (A) returned to 5% over 5 min. The flow rate was 1 mL/min and the detection was at 220 nm. NP-HPLC was performed on a Hypersil Si column $(150 \times 4.6 \text{ mm}, 5 \mu\text{m})$ with hexane as mobile phase. The flow rate was 0.8 mL/min and the detection was set at 254 nm.^[106]

The separation of five rhubarb anthraquinones (standard substances, not extracted from plant) is described, and the migration times, peak heights, area, and reproducibility have been investigated. Due to the increased interest in capillary electrochromatography (CEC), a hybrid of HPLC and CE, many compounds of interest from medicinal plants are being analysed by this method. Rhubarb (*Rheum palmatum* L.) is one of the oldest and best known herbal medicines and is officially listed in pharmacopoeias of many countries. The separation of anthraquinones from the roots of this plant was performed on a packed ODS electochromatography column. The instrumentation was a laboratory made CEC system comprising an Isco CV4 capillary electrophoresis absorbance detector (Lincoln, NE, USA), a 9323 HVPS high-voltage power supply, and a TL-9800 chemstation for data acquisition and handling. Fused silica

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

capillary tubing (100 μ m i.d., 365 μ m o.d.), L = 45 cm, and 25 cm packed with HPLC stationary phase. Mobile phase was a mixture of different concentrations of acetonitrile–sodium dihydrogenphosphate (100 mM) with the pH adjusted with 2-[*N*-morpholine] ethanesulphonic acid.^[107]

Phytoestrogens (8-prenylnaringenin) from *H. lupulus* L. were extracted from dried flowers by supercritical fluid CO₂, or by three times extraction with methanol–water (3 : 1), refluxing under N₂ atmosphere. The combined methanolic extracts were filtered and concentrated at 30°C. HPLC was coupled with MS. Liquid chromatography was performed on Alltima RP C₁₈ column (250 × 4.6 mm, 5 µm), with linear gradient elution with 500 ppm formic acid in water (A) and acetonitrile (B), following the pattern: 0–2 min, 40% B in A; 2– 20 min, 40% to 60% B in A; 20–30 min, 60% to 95% B in A; 30–35 min, 95% B in A. The flow rate was 0.9 mL/min, and the detection was at 280 nm. Mass spectrometry was in positive and negative ionization mode, N₂ the employed gas, and quantification by selecting ion monitoring at m/z 341.^[108]

Twenty ecdysteroids from Lychnis flos-coculi (Caryopyllaceae) were analysed by multiple hyphenated methods, HPLC-UV-FTIR-MS and HPLC-UV-FTIR-NMR. The powder from air dried plant material was extracted with 96% ethanol (1 L for every 100 g) with continuous stirring for 2-3 days. The sample was filtered, evaporated to dryness, redissolved in a small volume of methanol, and centrifuged. Immediately prior to HPLC the sample was evaporated to dryness and taken up in a small volume of deuterium oxide. Chromatography was performed on Hypersil HIRPB C_{18} column (100 × 4.6 mm, 5 μ m) or a Hypersil H5BDS-C₁₈ column (250 × 4.6 mm, 5 μ m) with acetonitrile and D₂O 99.8% isotopic purity as mobile phase. The flow rate was 1 mL/min, and diode-array detection (DAD), UV spectra in the range 190-360 nm. FTIR spectra were obtained with 20 scans per spectrum (5 s acquisition time) with a sensitive MCT (mercury cadmium telluride) liquid nitrogen cooled detector; 8 cm^{-1} spectral resolution. MS with electrospray ionisation (ESI) and a Z Spray source, operated in positive ion mode, was obtained for the mass range 100-900 Daltons.[109]

Antioxidants from *Sideritis* species (Labiatae, *S. scardica*) were extracted, from the air-dried, ground plant material, with methanol, the solvent evaporated to dryness, followed by successive partitioning between water and *tert*-butyl methyl ether, ethyl acetate, and 1-butanol. The obtained subextracts were evaporated to dryness under vacuum, at 50°C, and the remaining aqueous layer was freeze-dried. Chromatography was performed on an Alltima C₁₈ column (250 × 4.6 mm, 5 µm); mobile phase was 90, 70, 50, 30, 10% methanol or acetonitrile in water or acetate buffer, mixed with 10^{-5} M 2,2'-diphenyl-1-picrylhydrazyl (DPPH) stable free radical; the flow rate 0.7 mL/min. The detection of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) bleaching (as a negative peak) was set at 517 nm.^[110]

2282

CIMPAN AND GOCAN

Paclitaxels (taxanes and 12 related taxanes) were analysed from *Taxus cuspidata* Siebold & Zucc. cv *Densiformis* (Taxaceae). Callus of *T. cuspidata* cv *Densiformis* was grown on Gamborg's B5 medium supplemented with sucrose, casein hydrolysate, agar, picloram, and α -naphthaleneacetic acid. Eight milli liter of medium were dispensed into each culture tube and autoclaved at 121.1°C for 20 min. Samples were taken over a period of 28 days. Samples were extracted four times with 1 mL of methylene chloride. The combined methylene chloride extract was evaporated to dryness at room temperature and then redissolved in 100 mL of methanol for HPLC analysis. The column was Microsorb-MV C8 (50 × 4.6 mm, 5 µm); mobile phase: acetonitrile–water (25 : 75, v/v) to acetonitrile–water (50 : 50, v/v) in 10 min; flow rate 2.50 mL/min, and detection at 227 nm.^[111]

Taxol is a promising anti-cancer drug that can be found naturally in many Taxus species (*T. brevilofolia, T. baccata, T. canadensis, T. cuspidata, T.X media, T. X media Nigra, T. X media Hicksii, T. X media Densiformis, T. cuspidata capitata, T. chinensis, T. floridana, T. yunnanensis*). Taxol and related taxanes were isolated and analysed from *Taxus wallichiana* extract by HPLC on different columns: Nova-Pak C₁₈ (150×3.9 mm, 4μ m), Symmetry C₁₈ (150×3.9 mm, 5μ m), Nova-Pak Phenyl (150×3.9 mm, 4μ m) and Curosil-B (250×4.6 mm, 3μ m); detection was at 228 nm. The plant green needles were extracted with methanol, the extract concentrated under reduced pressure, diluted with water, defatted with hexane, and extracted again with chloroform. The chloroform extract contained taxoids, and was further prepared for HPLC by concentration and dilution in methanol–chloroform. The mobile phase was a mixture of methanol–acetonitrile–water, investigated for different proportions and various gradients.^[112]

Naphthodianthrones (hypericin, pseudohypericin) were extracted with ethanol from capsules and tablets, so that the concentration will be comparable to *H. perforatum* plant material. Alcoholic tinctures were centrifuged and analysed directly. The HPLC column was Ultrasphere ODS RP-C₁₈ ($250 \times 4.6 \text{ mm}$, 5 µm); the mobile phase: (A) methanol–acetonitrile (5:4), (B) triethylammonium acetate buffer. Initial conditions A-B (70:30) for 2 min, then A incressed linearly to 90% over 8 min, held constant for 4 min, then A to 100% over 2 min and held constant for 5 min, returning to initial conditions over 1 min and held for 5 min. The flow rate was 1 mL/min, and the diode-array detection provided the UV-Vis spectra in the range 200–600 nm, max at 236 and 592 nm. For the fluorescence detection, the excitation wavelength was 236 nm, and the emission was at 592 nm. Mass spectrometry scanned the *m/z* ratio 350–700.^[113]

Anthocyanins are widely distributed in various plant species, mainly in fruits and flowers. They have high potential as food colorants because of their low toxicity. The anthocyanins were extracted from *Daucus carota* (carrot) using acidified methanol (1% HCl) overnight at 4° C. The extract was concentrated at

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

2283

reduced pressure, washed with chloroform and diethyl ether to remove chlorophyll and other lipid materials. The concentrate was loaded onto a Dowex 50 W-4X, H⁺ type resin column. Anthocyanins were eluted from the column with acidified methanol. The eluate was concentrated and separated on a Sephadex LH-20 column, with methanol: acetic acid: water (10:1:9). The anthocyanin fractions were hydrolysed with 2 N HCl for 1 h, the acyl groups were extracted with diethyl ether, the aglycons with amyl alcohol, and the aqueous solution was used for carbohydrate analysis. HPLC of anthocyanidins (aglycones) was performed on a µBondapack C₁₈ column (250 × 4.6 mm, 10 µm). Mobile phase was methanol: acetic acid: water (7:1:2, v/v), the flow rate 1 mL/min, and the detection was at 530 nm. For MS, xenon was used as FAB gas (6 kV, 10 mA), and thioglycerol as the matrix. For NMR measurements, CD3 OD + 10% TFA-d was used as solvent and the chemical shifts were recorded for both proton and ¹³C NMR as ppm.^[114]

Polyprenols present in the leaves of *G. biloba* were analysed by HPLC and SFC (supercritical fluid chromatography).^[115] The method allows the quantification of C_{85} , C_{90} , C_{95} , and C_{120} polyprenols. The last one cannot be identified by HPLC. Pulverized leaves were extracted in *n*-hexane, then the *n*-hexane extract was washed three times with 90% aqueous methanol and vigorously stirred with potassium carbonate and methanol. After a further washing, once with water and twice with saturated sodium chloride solution, the resulting *n*-hexane solution was passed through sodium sulfate. The eluted *n*-hexane prior to separation of the polyprenols by SFC.

A chemically bonded SB-Phenyl-50 capillary column ($10 \text{ m} \times 50 \text{ mm}$ i.d., film thickness 0.25 mm) was used for the separation of polyprenols. Separation of polyprenols was achieved by pressure gradient in which the initial pressure of 200 atm was increased at a rate of 20 atm/min to a final pressure of 400 atm. The oven temperature was maintained at 100°C. The SFC system was equipped with a flame ionization detector. The concentration of each polyprenol (C₈₅, C₉₀, and C₉₅, respectively) was calculated from the standard curves. SFC is an interesting an alternative method for HPLC.

REFERENCES

- 1. Pachaly, P. *DC-Atlas. Dünnschicht Chromatographie in der Apotheke*; Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 1995.
- 2. La Pharmacopée Française, Xth Ed.; L'Adrapharm: Paris, 1983; and supplements until 1995.
- 3. *Homoopathisches Arzneibuch*, 1st Ed.; Deutscher Apotheker Verlag Stuttgart Govi-Verlag GmbH: Germany, 1985; supplements 1991, 1995.

2284

CIMPAN AND GOCAN

- 4. DAB 10, Deutsches Arzneibuch 10, Ausgabe 1991, Deutscher Apoteker Verlag, Stuttgart: Germany, 1991.
- American Herbal Pharmacopeia, Santa-Cruz, CA, USA, 1999. The Romanian Pharmacopoeia, Xth Ed.; Editura Medicala: Bucharest, Romania, 1993.
- 6. The United States Pharmacopeia. XXIIIth revision, Natural Formulas 18, United States Pharmacopeial Convention: Rockville, MD, 1995.
- Scalia, S.; Giuffreda, L.; Pallado, P. Analytical and Preparative Supercritical Fluid Extraction of Chamomile Flowers and its Comparison with Conventional Methods. J. Pharm. Biomed. Anal. 1999, 21, 549–558.
- Bringmann, G.; Wohlfarth, M.; Heubes, M. Observation of Exchangeable Protons by High-Performance Liquid Chromatography–Nuclear Magnetic Resonance Spectroscopy and High-Performance Liquid Chromatography– Electrospray Ionization Mass Spectrometry: a Useful Tool for the Hyphenated Analysis of Natural Products. J. Chromatogr. A 2000, 904, 243–249.
- Wilson, I.D. Multiple Hyphenation of Liquid Chromatography with Nuclear Magnetic Resonance Spectroscopy, Mass Spectrometry and Beyond. J. Chromatogr. A 2000, 892, 315–327.
- Louden, D.; Handley, A.; Lafont, R; Taylor, S.; Sinclair, I.; Lenz, E.; Orton, T.; Wilson, I.D. HPLC Analysis of Ecdysteroids in Plant Extracts Using Superheated Deuterium Oxide with Multiple On-Line Spectroscopic Analysis (UV, IR, ¹H NMR, and MS). Anal.Chem. **2002**, *74* (1), 288–294.
- 11. Olah, N.-K. *The Phytochemical Characterization of Plant Extracts "Babes-Bolyai*". University Cluj-Napoca, Romania; in preparation, 2002; Ph.D. thesis.
- 12. Pietta, P.; Mauri, P.; Bruno, A.; Rava, A.; Manera, E.; Ceva, P. Identification of Flavonoids from *Ginkgo biloba* L. by High-Performance Liquid Chromatography with Diode-Array UV Detection. J. Chromatogr. **1991**, *553*, 223–231.
- Krause, M.; Galensa, R. Analysis of Enantiomeric Flavanones in Plant Extracts by High-Performance Liquid Chromatography on a Cellulose Triacetate Based Chiral Stationary Phase. Chromatographia 1991, 2, 69– 72.
- Lin, L.-Z.; He, X.-G.; Lindenmajier, M.; Nolan, G.; Yang, J.; Cleary, M.; Qiu, S.-X.; Cordell, G.A. Liquid Chromatograpy–Electrospray Ionization Mass Spectrometry Study of the Flavonoids of the Roots of *Astragalus mongholicus* and *A. membranaceus*. J. Chromatogr. A 2000, 876, 87–95.
- 15. Guerrero, G.; Suarez, M. Chlorogenic Acids as a Potential Criterion in Coffee Genotype Selections. J. Agric. Food Chem. **2001**, *49* (5), 2454–2458.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

- 16. Rohr, G.E.; Meier, B.; Sticher, O. Quantitative Reversed-Phase High-Performance Liquid Chromatography of Procyanidins in *Crataegus* Leaves and Flowers. J. Chromatogr. A **1999**, *835*, 59–65.
- 17. Rehwald, A.; Meier, B.; Sticher, O. Qualitative and Quantitative Reversed-Phase High-Performance Liquid Chromatography of Flavonoids in *Crataegus* Leaves and Flowers. J. Chromatogr. A **1994**, 677, 25–33.
- 18. Rath, G.; Toure, A.; Nianga, M.; Wolfender, J.L.; Hostettmann, K. Characterization of *C*-Glycosylflavones from *Dissotis rotundifolia* by Liquid Chromapgraphy–UV Diode Array Detection–Tandem Mass Spectrometry. Chromatographia **1995**, *41*, 333–341.
- Conde, E.; Cadahia, E.; Garcia-Vallejo, M.C. HPLC Analysis of Flavonoids and Phenolic Acids and Aldehydes in *Eucalyptus* spp. Chromatographia 1995, 41, 657–659.
- Wolfender, J.-L.; Rodriguez, S.; Hostettmann, K. Liquid Chromatography Coupled to Mass Spectrometry and Nuclear Magntic Resonance Spectroscopy for the Screening of Plant Constituents. J. Chromatogr. A 1998, 794, 299–316.
- 21. Pietta, P.; Mauri, P.; Rava, A. Reversed-Phase High-Performance Liquid Chromatographic Method for the Analysis of Biflavones in *Ginkgo biloba* L. Extract. J. Chromatogr. **1988**, *437*, 453–456.
- Hasler, A.; Gross, G.-A.; Meier, B.; Sticher, O. Complex Flavonol Glycosides from the Leaves of *Ginkgo biloba*. Phytochemistry 1992, 31, 1391–1394,
- 23. Pietta, P.; Facino, R.M.; Carini, M.; Mauri, P. Thermospray Liquid Chromatography–Mass Spectrometry of Flavonol Glycosides From Medicinal Plants. J. Chromatogr. A **1994**, *661*, 121–126.
- Hasler, A.; Sticher, O. Identification and Determination of the Flavonoids from *Ginkgo biloba* by High-Performance Liquid Chromatography. J. Chromatogr. 1992, 605, 41–48.
- Stevens, J.F.; Taylor, A.W.; Nickerson, G.B.; Ivancic, M.; Henning, J.; Haunold, A.; Deinzer, M.L. Prenylfavonoid Variation in *Humulus lupulus*: Distribution and Taxonomic Significance of Xanthogalenol and 4'-O-Methylxanthohumol. Phytochemistry **2000**, *53*, 759–775.
- 26. Tekelova, D.; Repcak, M.; Zenkova, E.; Toth, J. Planta Med. 2000, 66, 778–780.
- Bilia, A.R.; Bergonzi, M.C.; Mazzi, G.; Vincieri, F.F. Analysis of Plant Complex Matrices by Use of Nuclear Magnetic Resonance Spectroscopy: St. Johns Wort Extract. J. Agric. Food Chem. 2001, 49 (5), 2115–2124.
- Hansen, S.H.; Jensen, A.G.; Cornett, C.; Bjornsdottir, I.; Taylor, S.; Wright, B.; Wilson, I.D. High-Performance Liquid Chromatography On-Line Coupled to High-Field NMR and Mass Spectrometry for Structure

Downloaded At: 20:48 23 January 2011

CIMPAN AND GOCAN

Elucidation of Constituents of *Hypericum perforatum* L. Anal. Chem. **1999**, *71* (22), 5235–5241.

- Mulinacci, N.; Romani, A.; Pinelli, P.; Vincieri, F.F.; Prucher, D. Characterization of *Matricaria recutita* L. Flower Extracts by HPLC– MS and HPLC-DAD Analysis. Chromatographia 2000, *51* (5/6), 301– 307.
- Kulevanova, S.; Stefova, M.; Stefkov, G.; Stafilov, T. Identification, Isolation, and Determination of Flavones in *Origanum vulgare* from Macedonian Flora. J. Liq. Chromatogr. & Rel. Technol. 2001, 24 (4), 589–600.
- Brantner, A.H.; Males, Z. Quality Assessment of *Paliurus spina-christi* Extracts. J. Etnopharmacol. **1999**, *66*, 175–179.
- Escarpa, A.; Gonzáles, M.C. Identification and Quantitation of Phenolics from Green Beans by HPLC. Chromatographia 2000, 52 (1/2), 33–38.
- Lapcik, O.; Hill, M.; Černy, I.; Lachman, J.; Al-Maharik, N.; Adlercreutz, H.; Hampl, R. Immunoanalysis of Isoflavonoids in *Pisum sativum* and *Vigna radiata*. Plant Sci. **1999**, *148*, 111–119.
- Merken, H.M.; Beecher, G.R. Liquid Chromatographic Method for the Separation and Quantification of Prominent Flavonoid Aglycones. J. Chromatogr. A 2000, 897 (1–2), 177–184.
- Guo, Z.; Jin, Q.; Fan, G.; Duan, Y.; Qin, C.; Wen, M. Microwave-Assisted Extraction of Effective Constituents from a Chinese Herbal Medicine, *Radix puerariae*. Anal. Chim. Acta 2001, 436, 41–47.
- Klejdus, B.; Vitamvasova-Sterbova, D.; Kuban, V. Identification of Isoflavone Conjugates in Red Clover (*Trifolium pratense*) by Liquid Chromatography–Mass Spectrometry After Two-Dimensional Solid-Phase Extraction. Anal. Chim. Acta 2001, 450, 81–97.
- Mikkonen, T.P.; Maeaettae, K.R.; Hukkanen, A.T.; Kokko, H.I.; Toerroenen, A.R.; Kaerenlampi, S.O.; Karjalainen, R.O. Flavonol Content Varies Among Black Currant Cultivars. J. Agric. Food Chem. 2001, 49 (7), 3274–3277.
- Katalinic, V. High-Performance Liquid Chromatographic Determination of Flavan Fingerprints in Plant Extracts. J. Chromatogr. A 1997, 775, 359–367.
- Middleton, E. Jr.; Kandaswami, C. In *The Flavonoids: Advances in Research Since 1986*; Harborne, J.B., Ed.; Chapman and Hall: Cambridge, 1994; Chapter. 15.
- 40. *The Flavonoids: Advances in Research Since 1986*; Harborne, J.B., Ed.; Chapman and Hall: Cambridge, 1994.
- 41. Bianco, A.; Uccella, N. Biophenolic Components of Olives. Food Res. Intl. **2000**, *33*, 475–485.
- Dakora, F.D.; Phillips, D.A. Diverse Functions of Isoflavonoids in Legumes Transcend Anti-Microbial Definitions of Phytoalexins, Physiol. Molec. Plant Pathol. **1996**, *49*, 1–20.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

- 43. Harborne, J.B. *Comparative Biochemistry of the Flavonoids*; Academic Press: London, 1967; 166–170.
- 44. Ollis, W.D. The Isoflavonoids. In: *The Chemistry of Flavonoid Compounds*; Pergamon Press: Oxford, 1962; 353–399.
- 45. Adlercreutz, H.; Mazur, W. Phytoestrogens and Western Diseases. Ann. Med. **1997**, *29*, 95–120.
- 46. Bruneton, J. *Pharmacognosy, Phytochemistry, Medicinal Plants*; Lavoisier: Paris, France, 1996.
- 47. Dapkevicius, A.; van Beek, T.A.; Niederlander, H.A.G. Evaluation and Comparison of Two Improved Techniques for the On-Line Detection of Antioxidants in Liquid Chromatography Eluates. J. Chromatogr. A **2001**, *912*, 73–82.
- 48. Harborne, J.P. *Phytochemical Methods*, 2nd Ed.; Chapman and Hall: London, 1984.
- 49. Ossipov, V.; Nurmi, K.; Loponen, J.; Haukioja, E.; Pihlaja, K. High-Performance Liquid Chromatographic Separation and Identification of Phenolic Compounds from Leaves of *Betula pubescens* and *Betula pendula*. J. Chromatogr. A **1996**, *721*, 59–68.
- De Swaef, S.I.; De Beer, J.O.; Vlietinck, A.J. Quantitative Determination of *p*-Cumaric Acid in *Echinacea purpurea* Press Juice and Urgenin. A Validated Method. J. Liq. Chromatogr. **1994**, *17*, 4169–4183.
- 51. Stuart, D.L.; Wills, R.B.H. Alkylamide and Cicoric Acid Levels in *Echinacea purpurea* Tissues During Plant Growth. J. Herbs, Spices Med. Plants **2000**, *7*, 91–101.
- 52. Bauer, V.R.; Remiger, P.; Wagner, H. *Echinacea* Vergleichende DC-und HPLC-Analyse der Herba-Drogen von *Echinacea purpurea, E. pallida* und *E. angustfolia.* Dtsch. Apoth. Ztg. **1988**, *126*, 174–180.
- 53. Głowniak, K.; Zgorka, G.; Kozyra, M. Solid-Phase Extraction and Reversed-Phase High-Performance Liquid Chromatography of Free Phenolic Acids in Some *Echinacea* Species. J. Chromatogr. A **1996**, 730, 25–29.
- Zgorka, G.; Kawka, S. Application of Conventional UV, Photodiode Array (PDA) and Fluorescence (FL) Detection to Analysis of Phenolic Acids in Plant Material and Pharmaceutical Preparations. J. Pharm. Biomed. Appl. 2001, 24, 1065–1072.
- 55. Facino, R.M.; Carini, M.; Aldini, G.; De Angelis, A. A Rapid Screening by Liquid Chromatography-Mass Spectrometry and Fast-Atom Bombardament Tamdem Mass Spectrometry of Phenolic Constituents with Radical Scavenging Activity, from *Krameria Triandra* Roots. Rapid Comm. Mass Spectrom **1997**, *11*, 1303–1308.
- 56. Exarchou, V.; Troganis, A.; Gerothanassis-Ioannis, P.; Tsimidou, M.; Boskou, D. Identification and Quantification of Caffeic and Rosmarinic

CIMPAN AND GOCAN

Acid in Complex Plant Extracts by the Use of Variable-Temperature Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. **2001**, *49* (1), 2–8.

- Zgorka, G.; Głowniak, K. Variation of Free Phenolic Acids in Medicinal Plants Belonging to the *Lamiaceae* Family. J. Pharm. Biomed. Anal. 2001, 26, 79–87.
- Schieber, A.; Keller, P.; Carle, R. Determination of Phenolic Acids and Flavonoids of Apple and Pear by High-Performance Liquid Chromatography. J. Chromatogr. A 2001, 910, 265–273.
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Changes in Grape Seed Polyphenols During Fruit Ripening. Phytochemistry 2000, 55, 77–85.
- Ohnishi-Kameyama, M.; Yanagida, A.; Kanda, T.; Nagata, T. Identification of Catechin Oligomers from Apple (*Malus pumila* cv. Fuji) in Matrix-Assisted Laser Desorbtion/Ionization Time-of Flight Mass Spectrometry and Fast-Atom Bombardment Mass Spectrometry. Rapid Comm. Mass Spectrom. **1997**, *11*, 31–36.
- 61. Rohr, G.E.; Meier, B.; Sticher, O. Quantitative Reversed-Phase High-Performance Liquid Chromatography of Procyanidins in *Crataegus* Leaves and Flowers. J. Chromatogr. A **1999**, *835*, 59–65.
- 62. Kubeczka, K.H. Vorkommen und Analytik Atheriseher Ole; Georg Thieme Verlag: Stuttgart, Germany, 1979.
- Mauri, P.; Migliazza, B.; Pietta, P. Liquid Chromatography/Electrospray Mass Spectrometry of Bioactive Terpenoids in Ginko Biloba L. J. Mass Spectrom. 1999, 34 (12), 1361–1367.
- Lacey, M.E.; Tan, Z.J.; Webb, A.G.; Sweedler, J.V. Union of Capillary High-Performance Liquid Chromatography and Microcoil Nuclear Magnetic Resonance Spectroscopy Applied to the Separation and Identification of Terpenoids. J. Chromatogr. A 2001, 922, 139–149.
- 65. Glasl, S.; Gunbilig, D.; Narantuya, S.; Werner, I.; Jurenitsch, J. Combination of Chromatographic and Spectroscopic Methods for the Isolation and Characterization of Polar Guaianolides from *Achillea asiatica*. J. Chromatogr. A **2001**, *936*, 193–200.
- Deli, J.; Matus, Z.; Toth, G. Comparative Study on the Carotenoid Composition in the Buds and Flowers of Different *Aesculus* Species. Chromatographia 2000, *51* (Suppl.), S179–S182.
- Zani, C.L.; Alves, T.M.A.; Queiroz, R.; Fontes, E.S.; Shin, Y.G.; Cordell, G.A. A Cytotoxic Diterpene from *Alomia myriadenia*. Phytochemistry 2000, *53*, 877–880.
- Ganzera, M.; Bedir, E.; Calis, I.; Khan, L.A. Separation of *Astragalus* saponins by Reversed Phase High Performance Liquid Chromatography and Evaporative Light Scattering Detection. Chromatographia 2001, *53* (3/4), 131–134.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

- 69. Ganzera, M.; Bedir, E.; Kahn, I.A. Separation of *Cimicifuga racemosa* Triterpene Glycosides by RP-HPLC and Evaporative Light Scattering Detection. Chromatographia **2000**, *52* (5/6), 301–304.
- Vogg, G.; Achatz, S.; Kettrup, A.; Sandermann, H., Jr. Fast, Sensitive and Selective Liquid Chromatographic–Tandem Mass Spectrometric Determination of Tumor-Promoting Diterpene Esters. J. Chromatogr. A 1999, 855, 563–573.
- Lobstein-Guth, A.; Francoise-Scheid, F.; Anton, R. Analysis of Terpenes From *Ginkgo biloba* L. by High-Performance Liquid Chromatography. J. Chromatogr. **1983**, 265, 431–438.
- 72. Pieta, P.G.; Mauri, P.L.; Rava, A. Analysis of Terpenes from *Ginkgo biloba* L. Extract by Reversed Phase High-Performance Liquid Chromatography. Chromatographia **1990**, *29*, 251–253.
- 73. Van Beek, T.A.; Scheeren, H.A.; Rantio, T; Melger, W.Ch.; Lelyveld, G.P. Determination of Ginkgolides and Bilobalide in *Ginkgo biloba* Leaves and Phytopharmaceuticals. J. Chromatogr. A **1991**, *543*, 375–387.
- 74. Maillard, M.P.; Wolfender, L.-L.; Hostettmann, K. Use of Liquid Chromatography-Thermospray Mass Spectrometry in Phytochemical Analysis of Crude Plant Extracts. J. Chromatogr. A **1993**, *647*, 147–154.
- 75. Chang, Y.-S.; Ku, Y.-R.; Lin, J.-H.; Lu, K.-L.; Ho, L.-K. Analysis of Three Lupane Type Triterpenoids in *Helicteres angustifolia* by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. **2001**, *26*, 849–855.
- Wolfender, J.; Maillard, M.; Hosttettmann, K. Liquid Chromatographic– Thermospray Mass Spectrometric Analysis of Crude Plant Extract Containing Phenolic and Terpene Glycoside. J. Chromatogr. A 1993, 647, 183–190.
- Li, W.; Gu, C.; Zhang, H.; Awang, D.V.C.; Fitzloff, J.F.; Fong, H.H.S.; van Breemen, R.B. Use of High-Performance Liquid Chromatography– Tandem Mass Spectrometry to Distinguish *Panax ginseng* (Asian Ginseng) and *Panax quinquefolius* L. (North American Ginseng). Anal. Chem. 2000, 72, 5417–5422.
- Chan, T.W.D.; But, P.P.H.; Cheng, S.W.; Kwok, I.M.Y.; Lau, F.W.; Xu, H.X. Differentiation and Authentication of *Panax ginseng, Panax quinquefolius*, and Ginseng Products by Using HPLC/MS. Anal. Chem. 2000, 72 (6), 1281–1287.
- Bazylak, G.; Rosiak, A.; Shi, C.-Y. Systematic Analysis of Glucoiridoids From *Penstemon serrulatus* Menz. by High-Performance Liquid Chromatography with Pre-column Solid-Phase Extraction. J. Chromatogr. A **1996**, *725*, 177–187.
- Tian, G.; Zhang, Y.; Zhang, T.; Yang, F.; Ito, Y. Separation of Tanshinones from *Salvia miltiorrhiza* Bunge by High-Speed Counter-Current Chromatography Using Stepwise Elution. J. Chromatogr. A 2000, 904, 107–111.

2290

CIMPAN AND GOCAN

- Pan, X.; Niu, G.; Liu, H. Microwave-Assisted Extraction of Tanshinones from *Salvia miltiorrhiza bunge* with Analysis by High-Performance Liquid Chromatography. J. Chromatogr. A 2001, *922*, 371–375.
- Dachtler, M.; Glaser, T.; Kohler, K.; Albert, K. Combined HPLC–MS and HPLC–NMR On-Line Coupling for the Separation and Determination of Lutein and Zeaxanthin Stereoisomers in Spinach and in Retina. Anal. Chem. 2001, 73 (3), 667–674.
- Gao, X.Q.; Bjork, U.L. Valerenic Acid Derivatives and Valepotriates Among Individuals, Varieties and Species of *Valeriana*. Fitoterapia 2000, 71, 19–24.
- Lin, G.; Li, P.; Li, S.-L.; Chan, S.-W. Chromatographic Analysis of *Fritillaria* Isosteroidal Alkaloids, the Active Ingredients of Beimu, the Antitussive Traditional Chinese Medicinal Herb. J. Chromatogr. A 2001, 935, 321–338.
- Srivastava, S.; Verma, R.K.; Gupta, M.M.; Singh, S.C.; Kumar, S. HPLC Determination of Vasicine and Vasicinone in *Adhatoda vasica* with Photo Diode Array Detection. J. Liq. Chromatogr. Rel. Technol. 2001, *24* (2), 153–159.
- Singh, D.V.; Maithy, A.; Verma, R.K.; Gupta, M.M.; Kumar, S. Simultaneous Determination of *Catharanthus* Alkaloids Using Reversed-Phase High-Performance Liquid Chromatography. J. Liq. Chromatogr. Rel. Technol. **2000**, *23* (4), 601–607.
- Sun, S.-W.; Kuo, C.-H.; Lee, S.-S.; Chen, C.-K. Determination of bisbenzylisoquinoline Alkaloids by High-Performance Liquid Chromatography (II). J. Chromatogr. A 2000, 891, 189–194.
- Lv, K.; Li, H.; Ding, M. Analysis of Tetramethylpyrazine in *Ephedrae herba* by Gas Chromatography–Mass Spectrometry and High-Performance Liquid Chromatography. J. Chromatogr. A 2000, 878, 147–152.
- Li, S.-L.; Lin, G.; Chan, S.-W.; Li, P. Determination of the Major Isosteroidal Alkaloids in Bulbs of *Fritillaria* by High-Performance Liquid Chromatography Coupled with Evaporative Light Scattering Detection. J. Chromatogr. A 2001, 909, 207–214.
- Singh, D.V.; Prajapati, S.; Bajpai, S.; Verma, R.K.; Gupta, M.M.; Kumar, S. Simultaneous Determination of Important Alkaloids in *Papaver somniferum* Using Reversed-Phase High-Performance Liquid Chromatography. J. Liq. Chromatogr. Rel. Technol. **2000**, *23* (11), 1757–1764.
- Mroczek, T.; Głowniak, K.; Wlaszczyk, A. Simultaneous Determination of N-Oxides and Free Bases of Pyrrolizidine Alkaloids by Cation-Exchange Solid-Phase Extraction and Ion-Pair High-Performance Liquid Chromatography. J. Chromatogr. A 2002, 949, 249–262.
- 92. Bringmann, G.; Wohlfarth, M.; Heubes, M. Observation of Exchangeable Protons by High-Performance Liquid Chromatography–Nuclear Magnetic

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

ANALYSIS OF MEDICINAL PLANTS

Resonance Spectroscopy and High-Performance Liquid Chromatography– Electrospray Ionization Mass Spectrometry: a Useful Tool for the Hyphenated Analysis of Natural Products. J. Chromatogr. A **2000**, *904*, 243–249.

- Thompson, H.J.; Brown, S.A. Separation of Some Coumarins of Higher Plants by Liquid Chromatography, J. Chromatogr. 1984, 314, 323–336.
- Jewers, K.; Zirvi, K.A. The Cumarin Glycosides of *Daphne acuminata*: Use of ¹³C- NMR Spectroscopy for Their Identification. Planta Medica 1978, 33, 403–406.
- 95. Hawryl, M.A.; Soczewinski, E.; Dzido, T.H. Separation of Coumarins from *Archangelica officinalis* in High-Performance Liquid Chromatography and Thin-Layer Chromatography Systems. J. Chromatogr. A **2000**, *886*, 75–81.
- Greger, H. In Chemistry and Biology of Naturally-Occuring Acetylenes and Related Compounds (NOARC); Lam, J., Bretler, H., Arnuson, T., Hansen, L., Eds.; Elsevier: Amsterdam, 1988; 159–178.
- 97. Bauer, R.; Wagner, H. In *Economic and Medicinal Plant Research*; Wagner, H.; Famsoworth, N.R., Eds.; Academic Press: New York, 1991; Vol. 5, 253–317.
- 98. Bauer, R.; Remiger, P. TLC and HPLC Analysis of Alkamides in *Echinacea* Drug. Planta Medica **1989**, *55*, 367–371.
- 99. He, X.; Lin, L.; Matthew, W.B.; Lian, L. Analysis of Alkamides in Roots and Achenes of *Echinacea purpurea* by Liquid Chromatography– Electrospray Mass Spectrometry. J. Chromatogr. A **1998**, *815*, 205–211.
- 100. Stuart, D.L.; Wills, R.B.H. J. Herbs 2000, 7, 91-101.
- Bauer, R.; Reimiger, P.; Wagner, H. Echinacea Vergleichende DC- und HPLC-Analyse der Herb-Drogen von *Echinacea purpurea*, *E. pallida* und *E. angustifolia*. Dtsch. Apoth. Ztg. **1988**, *128*, 174–180.
- Pery, N.B.; van Klink, J.W.; Burgess, E.J.; Parmenter, G.A. Alkamide Leaves in *Echinacea purpurea*: Effects of Processing, Drying and Storage. Planta Medica 2000, *66*, 54–56.
- Binns, S.E.; Inparajah, I.; Baum, B.R.; Arnason, J.T. Methyl Jasmonate Increases Reported Alkamides and Ketoalkene/ynes in *Echinacea Pallida* (Asteraceae). Phytochemistry 2001, 57, 417–420.
- 104. Wittstock, U.; Hadacek, F.; Wurz, G.; Teuscher, B.; Greger, H. Polyacetylenes from Water Hemlock (*Cicuta virosa*). Planta Medica 1995, 61, 439–445.
- 105. Li, H.-X.; Ding, M.-Y.; Lv, K.n; Wei, Y.; Yu, J.-Y. Identification and Determination of the Active Compounds in *Gastrodia elata* Blume by HPLC. J. Liq. Chromatogr. Rel. Technol. 2001, 24 (4), 579–588.
- 106. Faghihi, J.; Jiang, X.; Vierling, R.; Goldman, S.; Sharfstein, S.; Sarver, J.; Erhardt, P. Reproducibility of the High-Performance Liquid Chromatographic Fingerprints Obtained from Two Soybean Cultivars and a Selected Progeny. J. Chromatogr. A 2001, *915*, 61–74.

2292

CIMPAN AND GOCAN

- Ding, J.; Ning, B.; Fu, G.; Lu, Y.; Dong, S. Separation of Rhubarb Anthraquinones by Capillary Electrochromatography. Chromatographia 2000, 52 (5/6), 285–288.
- Rong, H.; Zhao, Y.; Lazou, K.; De Keukeleire, D.; Milligan, S.R.; Sandra, P. Quantitation of 8-Prenylnaringenin, a Novel Phytoestrogen in Hops (*Humulus lupulus* L.), Hop Products, and Beers, by Benchtop HPLC–MS Using Electrospray Ionization. Chromatographia 2000, 51 (910), 545–552.
- 109. Louden, D.; Handley, A.; Taylor, S.; Lenz, E.; Miller, S.; Wilson, I.D.; Sage, A.; Lafont, R. Spectroscopic Characterisation and Identification of Ecdysteroids Using High-Performance Liquid Chromatography Combined with On-Line UV-Diode Array, FT-Infrared And ¹H-Nuclear Magnetic Resonance Spectroscopy and Time of Flight Mass Spectrometry. J. Chromatogr. A **2001**, *910*, 237–246.
- Koleva, I.I.; Niederlaender, H.A.G.; van Beek, T.A. An On-Line HPLC Method For Detection of Radical Scavenging Compounds in Complex Mixtures. Anal. Chem. 2000, 72 (10), 2323–2328.
- 111. Nguyen, T.; Eshraghi, J.; Gonyea, G.; Ream, R.; Smith, R. Studies on Factors Influencing Stability and Recovery of Paclitaxel from Suspension Media and Cultures of *Taxus cuspidata* cv *Densiformis* by High-Performance Liquid Chromatography. J. Chromatogr. A 2001, 911, 55–61.
- 112. Bala, S.; Uniyal, G.C.; Chattopadhyay, S.K.; Tripathi, V.; Sashidhara, K.V.; Kulshrestha, M.; Sharma, R.P.; Jain, S.P.; Kukreja, A.K.; Kumar, S. Analysis of Taxol and Major Taxoids in Himalayan Yew, *Taxus wallichiana*. J. Chromatogr. A **1999**, *858*, 239–244.
- Draves, A.H.; Walker, S.E. Determination of Hypericin and Pseudohypericin in Pharmaceutical Preparations by Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B 2000, 749, 57–66.
- Narayan, M.S.; Venkataraman, L.V. Characterisation of Anthocyanins Derived from Carrot (*Daucus carota*) Cell Culture. Food Chem. 2000, 70, 361–363.
- Huh, H.; Staba, J. Supercritical Fluid Chromatographic Analysis of Polyprenols in *Ginkgo biloba* L. J. Chromatogr. **1992**, 600, 364–369.

Received April 1, 2002 Accepted May 1, 2002 Manuscript 5820